47,956 research outputs found

    Strong laws of large numbers for sub-linear expectations

    Full text link
    We investigate three kinds of strong laws of large numbers for capacities with a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov's strong law of large numbers to the case where probability measures are no longer additive. An important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.Comment: 10 page

    Wormhole Effect in a Strong Topological Insulator

    Full text link
    An infinitely thin solenoid carrying magnetic flux Phi (a `Dirac string') inserted into an ordinary band insulator has no significant effect on the spectrum of electrons. In a strong topological insulator, remarkably, such a solenoid carries protected gapless one-dimensional fermionic modes when Phi=hc/2e. These modes are spin-filtered and represent a distinct bulk manifestation of the topologically non-trivial insulator. We establish this `wormhole' effect by both general qualitative considerations and by numerical calculations within a minimal lattice model. We also discuss the possibility of experimental observation of a closely related effect in artificially engineered nanostructures.Comment: 4 pages, 3 figures. For related work and info visit http://www.physics.ubc.ca/~fran

    Stability of Majorana Fermions in Proximity-Coupled Topological Insulator Nanowires

    Full text link
    It has been shown previously that a finite-length topological insulator nanowire, proximity-coupled to an ordinary bulk s-wave superconductor and subject to a longitudinal applied magnetic field, realizes a one-dimensional topological superconductor with an unpaired Majorana fermion (MF) localized at each end of the nanowire. Here, we study the stability of these MFs with respect to various perturbations that are likely to occur in a physical realization of the proposed device. We show that the unpaired Majorana fermions persist in this system for any value of the chemical potential inside the bulk band gap of order 300 meV in Bi2_2Se3_3 by computing the Majorana number. From this calculation, we also show that the unpaired Majorana fermions persist when the magnetic flux through the nanowire cross-section deviates significantly from half flux quantum. Lastly, we demonstrate that the unpaired Majorana fermions persist in strongly disordered wires with fluctuations in the on-site potential ranging in magnitude up to several times the size of the bulk band gap. These results suggest this solid-state system should exhibit unpaired Majorana fermions under accessible conditions likely important for experimental study or future applications.Comment: 17 pages, 13 figure

    An Invariance Principle of G-Brownian Motion for the Law of the Iterated Logarithm under G-expectation

    Full text link
    The classical law of the iterated logarithm (LIL for short)as fundamental limit theorems in probability theory play an important role in the development of probability theory and its applications. Strassen (1964) extended LIL to large classes of functional random variables, it is well known as the invariance principle for LIL which provide an extremely powerful tool in probability and statistical inference. But recently many phenomena show that the linearity of probability is a limit for applications, for example in finance, statistics. As while a nonlinear expectation--- G-expectation has attracted extensive attentions of mathematicians and economists, more and more people began to study the nature of the G-expectation space. A natural question is: Can the classical invariance principle for LIL be generalized under G-expectation space? This paper gives a positive answer. We present the invariance principle of G-Brownian motion for the law of the iterated logarithm under G-expectation
    • …
    corecore