80 research outputs found

    Evaluation of Agreement between HRT III and iVue OCT in Glaucoma and Ocular Hypertension Patients

    Get PDF
    Purpose. To determine the agreement between Moorfields Regression Analysis (MRA), Glaucoma Probability Score (GPS) of Heidelberg retinal tomograph (HRT III), and peripapillary nerve fibers thickness by iVue Optical Coherence Tomography (OCT). Methods. 72 eyes with ocular hypertension or primary open angle glaucoma (POAG) were included in the study: 54 eyes had normal visual fields (VF) and 18 had VF damage. All subjects performed achromatic 30° VF by Octopus Program G1X dynamic strategy and were imaged with HRT III and iVue OCT. Sectorial and global MRA, GPS, and OCT parameters were used for the analysis. Kappa statistic was used to assess the agreement between methods. Results. A significant agreement between iVue OCT and GPS for the inferotemporal quadrant (κ: 0.555) was found in patients with abnormal VF. A good overall agreement between GPS and MRA was found in all the eyes tested (κ: 0.511). A good agreement between iVue OCT and MRA was shown in the superonasal (κ: 0.656) and nasal (κ: 0.627) quadrants followed by the superotemporal (κ: 0.602) and inferotemporal (κ: 0.586) sectors in all the studied eyes. Conclusion. The highest percentages of agreement were found per quadrant of the MRA and the iVue OCT confirming that in glaucoma damage starts from the temporal hemiretina

    A BAC Transgene Expressing Human CFTR under Control of Its Regulatory Elements Rescues Cftr Knockout Mice

    Get PDF
    Small-molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR) biology show promise in the treatment of cystic fibrosis (CF). A Cftr knockout (Cftr KO) mouse expressing mutants of human CFTR would advance in vivo testing of new modulators. A bacterial artificial chromosome (BAC) carrying the complete hCFTR gene including regulatory elements within 40.1 kb of DNA 5? and 25 kb of DNA 3? to the gene was used to generate founder mice expressing hCFTR. Whole genome sequencing indicated a single integration site on mouse chromosome 8 (8qB2) with ~6 gene copies. hCFTR+ offspring were bred to murine Cftr KO mice, producing hCFTR+/mCftr? (H+/m?) mice, which had normal survival, growth and goblet cell function as compared to wild-type (WT) mice. Expression studies showed hCFTR protein and transcripts in tissues typically expressing mCftr. Functionally, nasal potential difference and large intestinal short-circuit (Isc) responses to cAMP stimulation were similar in magnitude to WT mice, whereas small intestinal cAMP ?Isc responses were reduced. A BAC transgenic mouse with functional hCFTR under control of its regulatory elements has been developed to enable the generation of mouse models of hCFTR mutations by gene editing for in vivo testing of new CF therapies

    Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells

    Get PDF
    We report a method of fabricating a high work function, solution processable vanadium oxide (V2Ox(sol)) hole-extracting layer. The atmospheric processing conditions of film preparation have a critical influence on the electronic structure and stoichiometry of the V2Ox(sol), with a direct impact on organic photovoltaic (OPV) cell performance. Combined Kelvin probe (KP) and ultraviolet photoemission spectroscopy (UPS) measurements reveal a high work function, n-type character for the thin films, analogous to previously reported thermally evaporated transition metal oxides. Additional states within the band gap of V2Ox(sol) are observed in the UPS spectra and are demonstrated using X-ray photoelectron spectroscopy (XPS) to be due to the substoichiometric nature of V2Ox(sol). The optimized V2Ox(sol) layer performance is compared directly to bare indium–tin oxide (ITO), poly(ethyleneoxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and thermally evaporated molybdenum oxide (MoOx) interfaces in both small molecule/fullerene and polymer/fullerene structures. OPV cells incorporating V2Ox(sol) are reported to achieve favorable initial cell performance and cell stability attributes

    NMDA receptor antagonists decrease GABA outflow from the septum and increase acetylcholine outflow from the hippocampus: a microdialysis study

    No full text
    The modulation of the septohippocampal cholinergic pathway by glutamatergic or GABAergic inputs was studied by monitoring the outflow of ACh collected via a transversal microdialysis probe implanted into the hippocampus and other brain areas of freely moving rats. In one set of experiments a transversal microdialysis membrane was inserted in the dorsal hippocampus, drugs were administered intracerebroventricularly through a cannula implanted in the lateral ventricle, and ACh outflow in the dialysate was measured by an HPLC method with an electrochemical detector. The dialysis membrane was usually perfused with Ringer's solution containing 7 microM physostigmine sulfate. Intracerebroventricular injections of the NMDA antagonists 3-((RS)-2- carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 1–50 nmol), MK801 (0.5–20 nmol), and D(-)-2-amino-7-phosphonoheptanoic acid (100 nmol) brought about an increase in hippocampal ACh outflow while the non-NMDA antagonist 6,7-dinitroquinoxaline-2,3-dione (0.25–20 nmol) was without effect. The increase in ACh outflow following CPP administration was dose dependent and reached a maximum of about 500%. It was abolished by TTX (0.5 microM) delivered locally to the hippocampus via the dialysis membrane and prevented by intracerebroventricular injection of the GABA agonist muscimol (5 nmol). In a second set of experiments, one microdialysis membrane was inserted in the dorsal hippocampus to detect ACh outflow and another in the septum to administer drugs locally and at the same time detect septal GABA outflow. The septal dialysis membrane was perfused with Ringer's solution without physostigmine, and GABA levels in the dialysate were measured by an HPLC method with a fluorescence detector. CPP (100 microM) perfused through the septum resulted in a decrease in septal GABA outflow and a concomitant increase in hippocampal ACh outflow. Muscimol (100 microM) administration into the septum abolished the effect of CPP on hippocampal ACh outflow but did not affect septal GABA outflow. These results demonstrate that in the septum NMDA receptors tonically activate GABAergic neurons which in turn inhibit the cholinergic septohippocampal neurons
    • …
    corecore