129 research outputs found

    Microvascular resistance predicts myocardial salvage and infarct characteristics in ST-elevation myocardial infarction

    Get PDF
    <b>Background:</b> The pathophysiology of myocardial injury and repair in patients with ST‐elevation myocardial infarction is incompletely understood. We investigated the relationships among culprit artery microvascular resistance, myocardial salvage, and ventricular function.<p></p> <b>Methods and Results:</b> The index of microvascular resistance (IMR) was measured by means of a pressure‐ and temperature‐sensitive coronary guidewire in 108 patients with ST‐elevation myocardial infarction (83% male) at the end of primary percutaneous coronary intervention. Paired cardiac MRI (cardiac magnetic resonance) scans were performed early (2 days; n=108) and late (3 months; n=96) after myocardial infarction. T2‐weighted‐ and late gadolinium–enhanced cardiac magnetic resonance delineated the ischemic area at risk and infarct size, respectively. Myocardial salvage was calculated by subtracting infarct size from area at risk. Univariable and multivariable models were constructed to determine the impact of IMR on cardiac magnetic resonance–derived surrogate outcomes. The median (interquartile range) IMR was 28 (17–42) mm Hg/s. The median (interquartile range) area at risk was 32% (24%–41%) of left ventricular mass, and the myocardial salvage index was 21% (11%–43%). IMR was a significant multivariable predictor of early myocardial salvage, with a multiplicative effect of 0.87 (95% confidence interval 0.82 to 0.92) per 20% increase in IMR; P<0.001. In patients with anterior myocardial infarction, IMR was a multivariable predictor of early and late myocardial salvage, with multiplicative effects of 0.82 (95% confidence interval 0.75 to 0.90; P<0.001) and 0.92 (95% confidence interval 0.88 to 0.96; P<0.001), respectively. IMR also predicted the presence and extent of microvascular obstruction and myocardial hemorrhage.<p></p> <b>Conclusion:</b> Microvascular resistance measured during primary percutaneous coronary intervention significantly predicts myocardial salvage, infarct characteristics, and left ventricular ejection fraction in patients with ST‐elevation myocardial infarction.<p></p&gt

    Impact of proctoring on success rates for percutaneous revascularisation of coronary chronic total occlusions.

    Get PDF
    OBJECTIVE: To assess the impact of proctoring for chronic total occlusion (CTO) percutaneous coronary intervention (PCI) in six UK centres. METHODS: We retrospectively analysed 587 CTO procedures from six UK centres and compared success rates of operators who had received proctorship with success rates of the same operators before proctorship (pre-proctored) and operators in the same institutions who had not been proctored (non-proctored). There were 232 patients in the pre-proctored/non-proctored group and 355 patients in the post-proctored group. Complexity was assessed by calculating the Japanese CTO (JCTO) score for each case. RESULTS: CTO PCI success was greater in the post-proctored compared with the pre-proctored/non-proctored group (77.5% vs 62.1%, p<0.0001). In more complex cases where JCTO≄2, the difference in success was greater (70.7% vs 49.5%, p=0.0003). After proctoring, there was an increase in CTO PCI activity in centres from 2.5% to 3.5%, p<0.0001 (as a proportion of total PCI), and the proportion of very difficult cases with JCTO score ≄3 increased from 15.3% (35/229) to 29.7% (105/354), p<0.0001. CONCLUSIONS: Proctoring resulted in an increase in procedural success for CTO PCI, an increase in complex CTO PCI and an increase in total CTO PCI activity. Proctoring may be a valuable way to improve access to CTO PCI and the likelihood of procedural success

    Discordance between resting and hyperemic indices of coronary stenosis severity: the VERIFY 2 study (a comparative study of resting coronary pressure gradient, instantaneous wave-free ratio and fractional flow reserve in an unselected population referred for invasive angiography)

    Get PDF
    Background—Distal coronary to aortic pressure ratio (Pd/Pa) and instantaneous wave-free ratio (iFR) are indices of functional significance of a coronary stenosis measured without hyperemia. It has been suggested that iFR has superior diagnostic accuracy to Pd/Pa when compared with fractional flow reserve (FFR). We hypothesized that in comparison with FFR, revascularization decisions based on either binary cutoff values for iFR and Pd/Pa or hybrid strategies incorporating iFR or Pd/Pa will result in similar levels of disagreement. Methods and Results—This is a prospective study in consecutive patients undergoing FFR for clinical indications using proprietary software to calculate iFR. We measured Pd/Pa, iFR, FFR, and hyperemic iFR. Diagnostic accuracy versus FFR ≀0.80 was calculated using binary cutoff values of ≀0.90 for iFR and ≀0.92 for Pd/Pa, and adenosine zones for iFR of 0.86 to 0.93 and Pd/Pa of 0.87 to 0.94 in the hybrid strategy. One hundred ninety-seven patients with 257 stenoses (mean diameter stenosis 48%) were studied. Using binary cutoffs, diagnostic accuracy was similar for iFR and resting Pd/Pa with misclassification rates of 21% versus 20.2% (P=0.85). In the hybrid analysis, 54% of iFR cases and 53% of Pd/Pa cases were outside the adenosine zone and rates of misclassification were 9.4% versus 11.9% (P=0.55). Conclusions—Binary cutoff values for iFR and Pd/Pa result in misclassification of 1 in 5 lesions. Using a hybrid strategy, approximately half of the patients do not receive adenosine, but 1 in 10 lesions are still misclassified. The use of nonhyperemic indices of stenosis severity cannot be recommended for decision making in the catheterization laboratory. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT02377310

    Prognostic significance of infarct core pathology in ST-elevation myocardial infarction survivors revealed by non-contrast T1 mapping cardiac magnetic resonance

    Get PDF
    Background: Myocardial longitudinal relaxation time (T1, ms) is a fundamental magnetic property of tissue that is related to water content and mobility. The pathophysiological and prognostic importance of native myocardial T1 values in acute ST-elevation myocardial infarction (STEMI) patients is unknown. We aimed to assess the clinical significance of infarct core native T1. Methods: We performed a prospective single center cohort study in reperfused STEMI patients who underwent CMR 2 days and 6 months post-MI. Native T1 CMR (MOLLI investigational prototype sequence: 3 (3) 3 (3) 5) was measured in myocardial regions-of-interest. The infarct territory and microvascular obstruction (MVO) were depicted with late gadolinium enhancement CMR. Adverse remodeling was defined as an increase in LV end-diastolic volume (LVEDV) ≄ 20% at 6 months. All-cause death or heart failure hospitalization was a pre-specified outcome that was assessed during follow-up. Results: 300 STEMI patients (mean±SD age 59±12 years, 74% male, 114 with anterior STEMI) gave informed consent and had CMR (14 July 2011 - 22 November 2012). Of these, 288 STEMI patients had evaluable T1 maps. Infarct size was 18 ±14% of LV mass. One hundred and forty five (50%) of 288 patients had late MVO, whereas 160 (56%) patients had infarct core pathology revealed by native T1. Native T1 within the infarct core (996.9±57.3; p&#60;0.01) was higher than in the remote zone (961±25 ms; p&#60;0.01) but lower than in the area-at-risk (1097 ±52 ms). In multivariable linear regression, native T1 in the infarct core was negatively associated with age, initial systolic blood pressure, TIMI coronary flow grade at initial angiography, Killip class at presentation and neutrophil count (all p&#60;0.05), independent of LVEF, LVEDV or infarct size. At 6 months, LVEDV increased by 5 (25) ml (n=262 patients with evaluable data). Adverse remodeling occurred in 30 (12%) patients and 23 (76.7%) of these patients MVO at baseline. T1 in the infarct core was a multivariable predictor of adverse remodeling (-0.01 (-0.02, -0.00); p=0.048). 288 (100%) patients were followed-up for a median of 845 days. Thirty (10.4%) patients died or experienced a heart failure event and 13 (4.5%) of these patients experienced the event post-discharge. Infarct core native T1 predicted all-cause death or heart failure post-discharge (hazard ratio 0.969, 95% CI 0.953, 0.985; p&#60;0.001) including after adjustment for LVEF (p&#60;0.001) and LVEDV at baseline (p&#60;0.001), and was comparable with MVO

    Risk assessment for the spread of Serratia marcescens within dental-unit waterline systems using Vermamoeba vermiformis

    Get PDF
    Vermamoeba vermiformis is associated with the biofilm ecology of dental-unit waterlines (DUWLs). This study investigated whether V. vermiformis is able to act as a vector for potentially pathogenic bacteria and so aid their dispersal within DUWL systems. Clinical dental water was initially examined for Legionella species by inoculating it onto Legionella selective-medium plates. The molecular identity/profile of the glassy colonies obtained indicated none of these isolates were Legionella species. During this work bacterial colonies were identified as a non-pigmented Serratia marcescens. As the water was from a clinical DUWL which had been treated with Alpronℱ this prompted the question as to whether S. marcescens had developed resistance to the biocide. Exposure to Alpronℱ indicated that this dental biocide was effective, under laboratory conditions, against S. marcescens at up to 1x108 colony forming units/millilitre (cfu/ml). V. vermiformis was cultured for eight weeks on cells of S. marcescens and Escherichia coli. Subsequent electron microscopy showed that V. vermiformis grew equally well on S. marcescens and E. coli (p = 0.0001). Failure to detect the presence of S. marcescens within the encysted amoebae suggests that V. vermiformis is unlikely to act as a vector supporting the growth of this newly isolated, nosocomial bacterium

    Remote Zone Extracellular Volume and Left Ventricular Remodeling in Survivors of ST-Elevation Myocardial Infarction

    Get PDF
    The natural history and pathophysiological significance of tissue remodeling in the myocardial remote zone after acute ST-elevation myocardial infarction (STEMI) is incompletely understood. Extracellular volume (ECV) in myocardial regions of interest can now be measured with cardiac magnetic resonance imaging. Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI [British Heart Foundation Magnetic Resonance Imaging in Acute ST-Segment Elevation Myocardial Infarction study]). Cardiac magnetic resonance was performed at 1.5 Tesla at 2 days and 6 months post STEMI. T1 modified Look-Locker inversion recovery mapping was performed before and 15 minutes after contrast (0.15 mmol/kg gadoterate meglumine) in 140 patients at 2 days post STEMI (mean age: 59 years, 76% male) and in 131 patients at 6 months post STEMI. Remote zone ECV was lower than infarct zone ECV (25.6±2.8% versus 51.4±8.9%; P&lt;0.001). In multivariable regression, left ventricular ejection fraction was inversely associated with remote zone ECV (P&lt;0.001), and diabetes mellitus was positively associated with remote zone ECV (P=0.010). No ST-segment resolution (P=0.034) and extent of ischemic area at risk (P&lt;0.001) were multivariable associates of the change in remote zone ECV at 6 months (ΔECV). ΔECV was a multivariable associate of the change in left ventricular end-diastolic volume at 6 months (regression coefficient [95% confidence interval]: 1.43 (0.10–2.76); P=0.036). ΔECV is implicated in the pathophysiology of left ventricular remodeling post STEMI, but because the effect size is small, ΔECV has limited use as a clinical biomarker of remodeling

    Comparative significance of invasive measures of microvascular injury in acute myocardial infarction

    Get PDF
    Background: The resistive reserve ratio (RRR) expresses the ratio between basal and hyperemic microvascular resistance. RRR measures the vasodilatory capacity of the microcirculation. We compared RRR, index of microcirculatory resistance (IMR), and coronary flow reserve (CFR) for predicting microvascular obstruction (MVO), myocardial hemorrhage, infarct size, and clinical outcomes, after ST-segment–elevation myocardial infarction. Methods: In the T-TIME trial (Trial of Low-Dose Adjunctive Alteplase During Primary PCI), 440 patients with acute ST-segment–elevation myocardial infarction from 11 UK hospitals were prospectively enrolled. In a subset of 144 patients, IMR, CFR, and RRR were measured post-primary percutaneous coronary intervention. MVO extent (% left ventricular mass) was determined by cardiovascular magnetic resonance imaging at 2 to 7 days. Infarct size was determined at 3 months. One-year major adverse cardiac events, heart failure hospitalizations, and all-cause death/heart failure hospitalizations were assessed. Results: In these 144 patients (mean age, 59±11 years, 80% male), median IMR was 29.5 (interquartile range: 17.0–55.0), CFR was 1.4 (1.1–2.0), and RRR was 1.7 (1.3–2.3). MVO occurred in 41% of patients. IMR&gt;40 was multivariably associated with more MVO (coefficient, 0.53 [95% CI, 0.05–1.02]; P=0.031), myocardial hemorrhage presence (odds ratio [OR], 3.20 [95% CI, 1.25–8.24]; P=0.016), and infarct size (coefficient, 5.05 [95% CI, 0.84–9.26]; P=0.019), independently of CFR≀2.0, RRR≀1.7, myocardial perfusion grade≀1, and Thrombolysis in Myocardial Infarction frame count. RRR was multivariably associated with MVO extent (coefficient, −0.60 [95% CI, −0.97 to −0.23]; P=0.002), myocardial hemorrhage presence (OR, 0.34 [95% CI, 0.15–0.75]; P=0.008), and infarct size (coefficient, −3.41 [95% CI, −6.76 to −0.06]; P=0.046). IMR&gt;40 was associated with heart failure hospitalization (OR, 5.34 [95% CI, 1.80–15.81] P=0.002), major adverse cardiac events (OR, 4.46 [95% CI, 1.70–11.70] P=0.002), and all-cause death/ heart failure hospitalization (OR, 4.08 [95% CI, 1.55–10.79] P=0.005). RRR was associated with heart failure hospitalization (OR, 0.44 [95% CI, 0.19–0.99] P=0.047). CFR was not associated with infarct characteristics or clinical outcomes. Conclusions: In acute ST-segment–elevationl infarction, IMR and RRR, but not CFR, were associated with MVO, myocardial hemorrhage, infarct size, and clinical outcomes

    Rationale and design of the Coronary Microvascular Angina Cardiac Magnetic Resonance imaging (CorCMR) diagnostic study: the CorMicA CMR sub-study

    Get PDF
    Introduction: Angina with no obstructive coronary artery disease (ANOCA) is a common syndrome with unmet clinical needs. Microvascular and vasospastic angina are relevant but may not be diagnosed without measuring coronary vascular function. The relationship between cardiovascular magnetic resonance (CMR)-derived myocardial blood flow (MBF) and reference invasive coronary function tests is uncertain. We hypothesise that multiparametric CMR assessment will be clinically useful in the ANOCA diagnostic pathway. Methods/analysis: The Stratified Medical Therapy Using Invasive Coronary Function Testing In Angina (CorMicA) trial is a prospective, blinded, randomised, sham-controlled study comparing two management approaches in patients with ANOCA. We aim to recruit consecutive patients with stable angina undergoing elective invasive coronary angiography. Eligible patients with ANOCA (n=150) will be randomised to invasive coronary artery function-guided diagnosis and treatment (intervention group) or not (control group). Based on these test results, patients will be stratified into disease endotypes: microvascular angina, vasospastic angina, mixed microvascular/vasospastic angina, obstructive epicardial coronary artery disease and non-cardiac chest pain. After randomisation in CorMicA, subjects will be invited to participate in the Coronary Microvascular Angina Cardiac Magnetic Resonance Imaging (CorCMR) substudy. Patients will undergo multiparametric CMR and have assessments of MBF (using a novel pixel-wise fully quantitative method), left ventricular function and mass, and tissue characterisation (T1 mapping and late gadolinium enhancement imaging). Abnormalities of myocardial perfusion and associations between MBF and invasive coronary artery function tests will be assessed. The CorCMR substudy represents the largest cohort of ANOCA patients with paired multiparametric CMR and comprehensive invasive coronary vascular function tests. Ethics/dissemination: The CorMicA trial and CorCMR substudy have UK REC approval (ref.16/WS/0192). Trial registration number: NCT03193294

    Systemic microvascular dysfunction in microvascular and vasospastic angina

    Get PDF
    Aims: Coronary microvascular dysfunction and/or vasospasm are potential causes of ischaemia in patients with no obstructive coronary artery disease (INOCA). We tested the hypothesis that these patients also have functional abnormalities in peripheral small arteries. Methods and results: Patients were prospectively enrolled and categorised as having microvascular angina (MVA), vasospastic angina (VSA) or normal control based on invasive coronary artery function tests incorporating probes of endothelial and endothelial-independent function (acetylcholine and adenosine). Gluteal biopsies of subcutaneous fat were performed in 81 subjects (62 years, 69% female, 59 MVA, 11 VSA, and 11 controls). Resistance arteries were dissected enabling study using wire myography. Maximum relaxation to ACh (endothelial function) was reduced in MVA vs. controls [median 77.6 vs. 98.7%; 95% confidence interval (CI) of difference 2.3–38%; P = 0.0047]. Endothelium-independent relaxation [sodium nitroprusside (SNP)] was similar between all groups. The maximum contractile response to endothelin-1 (ET-1) was greater in MVA (median 121%) vs. controls (100%; 95% CI of median difference 4.7–45%, P = 0.015). Response to the thromboxane agonist, U46619, was also greater in MVA (143%) vs. controls (109%; 95% CI of difference 13–57%, P = 0.003). Patients with VSA had similar abnormal patterns of peripheral vascular reactivity including reduced maximum relaxation to ACh (median 79.0% vs. 98.7%; P = 0.03) and increased response to constrictor agonists including ET-1 (median 125% vs. 100%; P = 0.02). In all groups, resistance arteries were ≈50-fold more sensitive to the constrictor effects of ET-1 compared with U46619. Conclusions: Systemic microvascular abnormalities are common in patients with MVA and VSA. These mechanisms may involve ET-1 and were characterized by endothelial dysfunction and enhanced vasoconstriction. Clinical trial registration: ClinicalTrials.gov registration is NCT03193294

    1-year outcomes of angina management guided by invasive coronary function testing (CorMicA)

    Get PDF
    Objectives: The aim of this study was to test the hypothesis that invasive coronary function testing at time of angiography could help stratify management of angina patients without obstructive coronary artery disease. Background: Medical therapy for angina guided by invasive coronary vascular function testing holds promise, but the longer-term effects on quality of life and clinical events are unknown among patients without obstructive disease. Methods: A total of 151 patients with angina with symptoms and/or signs of ischemia and no obstructive coronary artery disease were randomized to stratified medical therapy guided by an interventional diagnostic procedure versus standard care (control group with blinded interventional diagnostic procedure results). The interventional diagnostic procedure–facilitated diagnosis (microvascular angina, vasospastic angina, both, or neither) was linked to guideline-based management. Pre-specified endpoints included 1-year patient-reported outcome measures (Seattle Angina Questionnaire, quality of life [EQ-5D]) and major adverse cardiac events (all-cause mortality, myocardial infarction, unstable angina hospitalization or revascularization, heart failure hospitalization, and cerebrovascular event) at subsequent follow-up. Results: Between November 2016 and December 2017, 151 patients with ischemia and no obstructive coronary artery disease were randomized (n = 75 to the intervention group, n = 76 to the control group). At 1 year, overall angina (Seattle Angina Questionnaire summary score) improved in the intervention group by 27% (difference 13.6 units; 95% confidence interval: 7.3 to 19.9; p &lt; 0.001). Quality of life (EQ-5D index) improved in the intervention group relative to the control group (mean difference 0.11 units [18%]; 95% confidence interval: 0.03 to 0.19; p = 0.010). After a median follow-up duration of 19 months (interquartile range: 16 to 22 months), major adverse cardiac events were similar between the groups, occurring in 9 subjects (12%) in the intervention group and 8 (11%) in the control group (p = 0.803). Conclusions: Stratified medical therapy in patients with ischemia and no obstructive coronary artery disease leads to marked and sustained angina improvement and better quality of life at 1 year following invasive coronary angiography. (Coronary Microvascular Angina [CorMicA]; NCT03193294
    • 

    corecore