202 research outputs found

    CMOS-compatible graphene photodetector covering all optical communication bands

    Full text link
    Optical interconnects are becoming attractive alternatives to electrical wiring in intra- and inter-chip communication links. Particularly, the integration with silicon complementary metal-oxide-semiconductor (CMOS) technology has received considerable interest due to the ability of cost-effective integration of electronics and optics on a single chip. While silicon enables the realization of optical waveguides and passive components, the integration of another, optically absorbing, material is required for photodetection. Germanium or compound semiconductors are traditionally used for this purpose; their integration with silicon technology, however, faces major challenges. Recently, graphene has emerged as a viable alternative for optoelectronic applications, including photodetection. Here, we demonstrate an ultra-wideband CMOS-compatible photodetector based on graphene. We achieve multi-gigahertz operation over all fiber-optic telecommunication bands, beyond the wavelength range of strained germanium photodetectors, whose responsivity is limited by their bandgap. Our work complements the recent demonstration of a CMOS-integrated graphene electro-optical modulator, paving the way for carbon-based optical interconnects.Comment: 18 pages, 4 figures. Nature Photonics, 201

    Optical imaging of strain in two-dimensional crystals

    Full text link
    Strain engineering is widely used in material science to tune the (opto-)electronic properties of materials and enhance the performance of devices. Two-dimensional atomic crystals are a versatile playground to study the influence of strain, as they can sustain very large deformations without breaking. Various optical techniques have been employed to probe strain in two-dimensional materials, including micro-Raman and photoluminescence spectroscopy. Here we demonstrate that optical second harmonic generation constitutes an even more powerful technique, as it allows to extract the full strain tensor with a spatial resolution below the optical diffraction limit. Our method is based on the strain-induced modification of the nonlinear susceptibility tensor due to a photoelastic effect. Using a two-point bending technique, we determine the photoelastic tensor elements of molybdenum disulfide. Once identified, these parameters allow us to spatially image the two-dimensional strain field in an inhomogeneously strained sample.Comment: 13 pages, 4 figure

    Photovoltaic effect in an electrically tunable van der Waals heterojunction

    Full text link
    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two- dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type- II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable and under appropriate gate bias, an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology.Comment: 26 pages, 14 figures, Nano Letters 201

    Device physics of van der Waals heterojunction solar cells

    Full text link
    Heterostructures based on atomically thin semiconductors are considered a promising emerging technology for the realization of ultrathin and ultralight photovoltaic solar cells on flexible substrates. Much progress has been made in recent years on a technological level, but a clear picture of the physical processes that govern the photovoltaic response remains elusive. Here, we present a device model that is able to fully reproduce the current-voltage characteristics of type-II van der Waals heterojunctions under optical illumination, including some peculiar behaviors such as exceedingly high ideality factors or bias-dependent photocurrents. While we find the spatial charge transfer across the junction to be very efficient, we also find a considerable accumulation of photogenerated carriers in the active device region due to poor electrical transport properties, giving rise to significant carrier recombination losses. Our results are important to optimize future device architectures and increase power conversion efficiencies of atomically thin solar cells.Comment: 20 pages, 5 figure

    Solar-energy conversion and light emission in an atomic monolayer p-n diode

    Full text link
    Two-dimensional (2D) atomic crystals, such as graphene and atomically thin transition metal dichalcogenides (TMDCs), are currently receiving a lot of attention. They are crystalline, and thus of high material quality, even so, they can be produced in large areas and are bendable, thus providing opportunities for novel applications. Here, we report a truly 2D p-n junction diode, based on an electrostatically doped tungsten diselenide (WSe2) monolayer. As p-n diodes are the basic building block in a wide variety of optoelectronic devices, our demonstration constitutes an important advance towards 2D optoelectronics. We present applications as (i) photovoltaic solar cell, (ii) photodiode, and (iii) light emitting diode. Light power conversion and electroluminescence efficiencies are ca. 0.5 % and 0.1 %, respectively. Given the recent advances in large-scale production of 2D crystals, we expect them to profoundly impact future developments in solar, lighting, and display technologies.Comment: 23 pages, 7 figures. Nature Nanotechnology (2014

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    Get PDF
    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (similar to 10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 10(8). This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics.ope

    Microcavity-integrated graphene photodetector

    Get PDF
    There is an increasing interest in using graphene (1, 2) for optoelectronic applications. (3-19) However, because graphene is an inherently weak optical absorber (only ≈2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating graphene with a Fabry-Pérot microcavity, the optical absorption is 26-fold enhanced, reaching values >60%. We present a graphene-based microcavity photodetector with responsivity of 21 mA/W. Our approach can be applied to a variety of other graphene devices, such as electro-absorption modulators, variable optical attenuators, or light emitters, and provides a new route to graphene photonics with the potential for applications in communications, security, sensing and spectroscopy

    Regenerative oscillation and four-wave mixing in graphene optoelectronics

    Full text link
    The unique linear and massless band structure of graphene, in a purely two-dimensional Dirac fermionic structure, have led to intense research spanning from condensed matter physics to nanoscale device applications covering the electrical, thermal, mechanical and optical domains. Here we report three consecutive first-observations in graphene-silicon hybrid optoelectronic devices: (1) ultralow power resonant optical bistability; (2) self-induced regenerative oscillations; and (3) coherent four-wave mixing, all at a few femtojoule cavity recirculating energies. These observations, in comparison with control measurements with solely monolithic silicon cavities, are enabled only by the dramatically-large and chi(3) nonlinearities in graphene and the large Q/V ratios in wavelength-localized photonic crystal cavities. These results demonstrate the feasibility and versatility of hybrid two-dimensional graphene-silicon nanophotonic devices for next-generation chip-scale ultrafast optical communications, radio-frequency optoelectronics, and all-optical signal processing.Comment: Accepted at Nature Photonics, July (2012
    corecore