25 research outputs found

    Excluding Electroweak Baryogenesis in the MSSM

    Full text link
    In the context of the MSSM the Light Stop Scenario (LSS) is the only region of parameter space that allows for successful Electroweak Baryogenesis (EWBG). This possibility is very phenomenologically attractive, since it allows for the direct production of light stops and could be tested at the LHC. The ATLAS and CMS experiments have recently supplied tantalizing hints for a Higgs boson with a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of the LSS, and we discuss the specific predictions made for EWBG in the MSSM. Combining data from all the available ATLAS and CMS Higgs searches reveals a tension with the predictions of EWBG even at this early stage. This allows us to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the (non-)decoupling limit, by examining correlations between different Higgs decay channels. We also examine the exclusion without the assumption of a ~ 125 GeV Higgs. The Higgs searches are still highly constraining, excluding the entire EWBG parameter space at greater than 90% CL except for a small window of m_h ~ 117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added references

    Higgs production and decay with a fourth Standard-Model-like fermion generation

    Get PDF
    State-of-the-art predictions for the Higgs-boson production cross section via gluon fusion and for all relevant Higgs-boson decay channels are presented in the presence of a fourth Standard-Model-like fermion generation. The qualitative features of the most important differences to the genuine Standard Model are pointed out, and the use of the available tools for the predictions is described. For a generic mass scale of 400-600 GeV in the fourth generation explicit numerical results for the cross section and decay widths are presented, revealing extremely large electroweak radiative corrections, e.g., to the cross section and the Higgs decay into WW or ZZ pairs, where they amount to about -50% or more. This signals the onset of a non-perturbative regime due to the large Yukawa couplings in the fourth generation. An estimate of the respective large theoretical uncertainties is presented as well.Comment: 24 pages, 5 figures, contribution to LHC Higgs Cross Section Working Group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections, discussion considerably extended to more scenarios for heavy fermion masse

    The Future of Precision Medicine : Potential Impacts for Health Technology Assessment

    Get PDF
    Objective Precision medicine allows health care interventions to be tailored to groups of patients based on their disease susceptibility, diagnostic or prognostic information or treatment response. We analyse what developments are expected in precision medicine over the next decade and consider the implications for health technology assessment (HTA) agencies. Methods We perform a pragmatic review of the literature on the health economic challenges of precision medicine, and conduct interviews with representatives from HTA agencies, research councils and researchers from a variety of fields, including digital health, health informatics, health economics and primary care research. Results Three types of precision medicine are highlighted as likely to emerge in clinical practice and impact upon HTA agencies: complex algorithms, digital health applications and ‘omics’-based tests. Defining the scope of an evaluation, identifying and synthesizing the evidence and developing decision analytic models will more difficult when assessing more complex and uncertain treatment pathways. Stratification of patients will result in smaller subgroups, higher standard errors and greater decision uncertainty. Equity concerns may present in instances where biomarkers correlate with characteristics such as ethnicity, whilst fast-paced innovation may reduce the shelf-life of guidance and necessitate more frequent reviewing. Discussion Innovation in precision medicine promises substantial benefits to patients, but will also change the way in which some health services are delivered and evaluated. As biomarker discovery accelerates and AI-based technologies emerge, the technical expertise and processes of HTA agencies will need to adapt if the objective of value for money is to be maintained

    Two-loop Virtual Top-quark Effect on Higgs-boson Decay to Bottom Quarks.

    Get PDF
    In most of the mass range encompassed by the limits from the direct search and the electroweak precision tests, the Higgs boson of the standard model preferably decays to bottom quarks. We present, in analytic form, the dominant two-loop electroweak correction, of O(G_F^2 m_t^4), to the partial width of this decay. It amplifies the familiar enhancement due to the O(G_F m_t^2) one-loop correction by about +16% and thus more than compensates the screening by about -8% through strong-interaction effects of order O(alpha_s G_F m_t^2).Comment: 9 pages, 1 figur

    Sila-Ibuprofen

    Get PDF
    The synthesis, characterization, biological activity,and toxicology of sila-ibuprofen, a silicon derivative of the most common nonsteroidal anti-inflammatory drug, is reported. The key improvements compared with ibuprofen are a four times higher solubility in physiological media and a lower melting enthalpy,which are attributed to the carbon−silicon switch. The improved solubility is of interest for postsurgical intravenous administration.A potential for pain relief is rationalized via inhibition experiments of cyclooxygenases I and II (COX-I and COX-II) as well as via a set of newly developed methods that combine molecular dynamics,quantum chemistry, and quantum crystallography. The binding affinity of sila-ibuprofen to COX-I and COX-II is quantified in terms of London dispersion and electrostatic interactions in the active receptor site. This study not only shows the potential of sila-ibuprofen for medicinal application but also improves our understanding of the mechanism of action of the inhibition process

    Two-loop electroweak corrections of #OMICRON#(G_FM_t"2) th the Higgs-boson decay into photons

    No full text
    We compute the dominant two-loop electroweak correction, of O(G_FM_t"2), to the partial width of the decay of an intermediate-mass Higgs boson into a pair of photons. We use the asymptotic-expansion technique in order to extract the leading dependence on the top-quark mass plus four expansion terms that describe the dependence on the W- and Higgs-boson masses. This correction reduces the born result by approximately 2.5%. As a by-product of our analysis, we also recover the O(G_FM_t"2) correction to the partial width of the Higgs-boson decay to two gluon jets. (orig.)Available from TIB Hannover: RA 2999(04-040) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore