71 research outputs found

    Mouse Transcobalamin Has Features Resembling both Human Transcobalamin and Haptocorrin

    Get PDF
    In humans, the cobalamin (Cbl) -binding protein transcobalamin (TC) transports Cbl from the intestine and into all the cells of the body, whereas the glycoprotein haptocorrin (HC), which is present in both blood and exocrine secretions, is able to bind also corrinoids other than Cbl. The aim of this study is to explore the expression of the Cbl-binding protein HC as well as TC in mice. BLAST analysis showed no homologous gene coding for HC in mice. Submaxillary glands and serum displayed one protein capable of binding Cbl. This Cbl-binding protein was purified from 300 submaxillary glands by affinity chromatography. Subsequent sequencing identified the protein as TC. Further characterization in terms of glycosylation status and binding specificity to the Cbl-analogue cobinamide revealed that mouse TC does not bind Concanavalin A sepharose (like human TC), but is capable of binding cobinamide (like human HC). Antibodies raised against mouse TC identified the protein in secretory cells of the submaxillary gland and in the ducts of the mammary gland, i.e. at locations where HC is also found in humans. Analysis of the TC-mRNA level showed a high TC transcript level in these glands and also in the kidney. By precipitation to insolubilised antibodies against mouse TC, we also showed that >97% of the Cbl-binding capacity and >98% of the Cbl were precipitated in serum. This indicates that TC is the only Cbl-binding protein in the mouse circulation. Our data show that TC but not HC is present in the mouse. Mouse TC is observed in tissues where humans express TC and/or HC. Mouse TC has features in common with both human TC and HC. Our results suggest that the Cbl-binding proteins present in the circulation and exocrine glands may vary amongst species

    The Lack of ADAM17 Activity during Embryonic Development Causes Hemorrhage and Impairs Vessel Formation

    Get PDF
    Background: ADAM17/TACE activity is important during embryonic development. We wished to investigate possible roles of this metalloprotease, focusing on vascular development. Methodology/Principal Findings: Mice mutant in the enzymatic activity of ADAM17 were examined at various stages of embryonic development for vascular pattern and integrity using markers for vessel wall cells. We observed hemorrhage and edema starting at embryonic day E14.5 and becoming more severe as development proceeded; prior to embryonic day E14.5, embryos appeared normal. Staining for PECAM-1/CD31 revealed abnormalities in the patterns of branching of the embryonic vasculature at E14.5. Conclusions/Significance: These abnormalities preceded association of pericytes or monocyte/macrophage cells with the affected vessels and, therefore, presumably arise from defects in endothelial function consequent upon failure of ADAM17 to cleave one or more substrates involved in vascular development, such as Notch, Delta, VEGFR2 or JAM-A. Our study demonstrates a role for ADAM17 in modulating embryonic vessel development and function

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    Bone marrow participates in the biosynthesis of human transcobalamin II

    No full text
    • …
    corecore