310 research outputs found

    The Electrochemical Carbon Nanotube Field-Effect Transistor

    Full text link
    We explore the electric-field effect of carbon nanotubes (NTs) in electrolytes. Due to the large gate capacitance, Fermi energy shifts of order +/- 1 V can be induced, enabling to tune NTs from p to n-type. Consequently, large resistance changes are measured. At zero gate voltage the NTs are hole doped in air with E_F ? 0.3-0.5 eV, corresponding to a doping level of ? 10^{13} cm^{-2}. Hole-doping increases in the electrolyte. This hole doping (oxidation) is most likely caused by the adsorption of oxygen in air and cations in the electrolyte

    Fed-batch control based upon the measurement of intracellular NADH

    Get PDF
    A series of experiments demonstrating that on-line measurements of intracellular NADH by culture fluorescence can be used to monitor and control the fermentation process are described. A distinct advantage of intercellular NADH measurements over other monitoring techniques such as pH and dissolved oxygen is that it directly measures real time events occurring within the cell rather than changes in the environment. When coupled with other measurement parameters, it can provide a finer degree of sophistication in process control

    Charge sensing in carbon nanotube quantum dots on microsecond timescales

    Full text link
    We report fast, simultaneous charge sensing and transport measurements of gate-defined carbon nanotube quantum dots. Aluminum radio frequency single electron transistors (rf-SETs) capacitively coupled to the nanotube dot provide single-electron charge sensing on microsecond timescales. Simultaneously, rf reflectometry allows fast measurement of transport through the nanotube dot. Charge stability diagrams for the nanotube dot in the Coulomb blockade regime show extended Coulomb diamonds into the high-bias regime, as well as even-odd filling effects, revealed in charge sensing data.Comment: 4 pages, 4 figure

    Tunable Polaronic Conduction in Anatase TiO2

    Get PDF
    Oxygen vacancies created in anatase TiO2 by UV photons (80–130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.open1192sciescopu

    Magnetite: Raman study of the high-pressure and low-temperature effects

    Full text link
    We report the results of a low-temperature (300K-15K) high-pressure (up to 22GPa) Raman study of the Verwey transition in magnetite (Fe3O4). We use additional Raman modes observed below the Verwey transition to determine how the transition temperature changes with the quasihydrostatic pressure. Increase of the pressure results in the linear decrease of the Verwey transition temperature, with no discontinuity. The corresponding pressure coefficient dTV/dP is found to be ~ -5.2 K/GPa. Such a decrease is substantially larger than the one predicted by the mean-field Coulomb interaction model of the transition

    Superconductivity and Stoichiometry in the BSCCO-family Materials

    Full text link
    We report on magnetization, c-axis and ab-plane resistivity, critical current, electronic band structure and superconducting gap properties. Bulk measurements and photoemission data were taken on similar samples.Comment: 4 pages, latex, to be published in Journal of Superconductivity. two figures available from Jian Ma at [email protected]

    Ground state properties of a confined simple atom by C60_{60} fullerene

    Full text link
    We numerically study the ground state properties of endohedrally confined hydrogen (H) or helium (He) atom by a molecule of C60_{60}. Our study is based on Diffusion Monte Carlo method. We calculate the effects of centered and small off-centered H- or He-atom on the ground state properties of the systems and describe the variation of ground state energies due to the C60_{60} parameters and the confined atomic nuclei positions. Finally, we calculate the electron distributions in xzx-z plane in a wide range of C60_{60} parameters.Comment: 23 pages, 9 figures. To appear in J.Phys. B: Atom. Mol. Op

    Electronic structures of doped anatase TiO2\rm TiO_{2}: Ti1xMxO2\rm Ti_{1-x}M_{x}O_{2} (M=Co, Mn, Fe, Ni)

    Full text link
    We have investigated electronic structures of a room temperature diluted magnetic semiconductor : Co-doped anatase TiO2\rm TiO_{2}. We have obtained the half-metallic ground state in the local-spin-density approximation(LSDA) but the insulating ground state in the LSDA+UU+SO incorporating the spin-orbit interaction. In the stoichiometric case, the low spin state of Co is realized with the substantially large orbital moment. However, in the presence of oxygen vacancies near Co, the spin state of Co becomes intermediate. The ferromagnetisms in the metallic and insulating phases are accounted for by the double-exchange-like and the superexchange mechanism, respectively. Further, the magnetic ground states are obtained for Mn and Fe doped TiO2\rm TiO_{2}, while the paramagnetic ground state for Ni-doped TiO2\rm TiO_{2}.Comment: 5 pages, 4 figure
    corecore