3,631 research outputs found
Non-equilibrium transport response from equilibrium transport theory
We propose a simple scheme that describes accurately essential
non-equilibrium effects in nanoscale electronics devices using equilibrium
transport theory. The scheme, which is based on the alignment and dealignment
of the junction molecular orbitals with the shifted Fermi levels of the
electrodes, simplifies drastically the calculation of current-voltage
characteristics compared to typical non-equilibrium algorithms. We probe that
the scheme captures a number of non-trivial transport phenomena such as the
negative differential resistance and rectification effects. It applies to those
atomic-scale junctions whose relevant states for transport are spatially placed
on the contact atoms or near the electrodes.Comment: 5 pages, 4 figures. Accepted in Physical Review
Structure and electronic properties of molybdenum monoatomic wires encapsulated in carbon nanotubes
Monoatomic chains of molybdenum encapsulated in single walled carbon
nanotubes of different chiralities are investigated using density functional
theory. We determine the optimal size of the carbon nanotube for encapsulating
a single atomic wire, as well as the most stable atomic arrangement adopted by
the wire. We also study the transport properties in the ballistic regime by
computing the transmission coefficients and tracing them back to electronic
conduction channels of the wire and the host. We predict that carbon nanotubes
of appropriate radii encapsulating a Mo wire have metallic behavior, even if
both the nanotube and the wire are insulators. Therefore, encapsulating Mo
wires in CNT is a way to create conductive quasi one-dimensional hybrid
nanostructures.Comment: 8 pages, 10 figure
Impact of dimerization and stretching on the transport properties of molybdenum atomic wires
We study the electrical and transport properties of monoatomic Mo wires with
different structural characteristics. We consider first periodic wires with
inter-atomic distances ranging between the dimerized wire to that formed by
equidistant atoms. We find that the dimerized case has a gap in the electronic
structure which makes it insulating, as opposed to the equidistant or
near-equidistant cases which are metallic. We also simulate two conducting
one-dimensional Mo electrodes separated by a scattering region which contains a
number of dimers between 1 and 6. The characteristics strongly depend on
the number of dimers and vary from ohmic to tunneling, with the presence of
different gaps. We also find that stretched chains are ferromagnetic.Comment: 8 pages, 7 figure
Impact of Fano and Breit-Wigner resonances in the thermoelectric properties of nanoscale junctions
We show that the thermoelectric properties of nanoscale junctions featuring
states near the Fermi level strongly depend on the type of resonance generated
by such states, which can be either Fano or Breit-Wigner-like. We give general
expressions for the thermoelectric coefficients generated by the two types of
resonances and calculate the thermoelectric properties of these systems, which
encompass most nanoelectronics junctions. We include simulations of real
junctions where metalloporphyrin molecules bridge gold electrodes and prove
that for some metallic elements the thermoelectric properties show a large
variability. We find that the thermopower and figure of merit are largely
enhanced when the resonance gets close to the Fermi level and reach values much
higher than typical values found in other nanoscale junctions. The specific
value and temperature dependence are determined by a series of factors such as
the strength of the coupling between the state and other molecular states, the
symmetry of the state, the strength of the coupling between the molecule and
the leads and the spin filtering behavior of the junction.Comment: 9 pages, 11 figure
Universality in the transport response of molecular wires physisorbed onto graphene electrodes
We analyze the low-voltage transport response of large molecular wires
bridging graphene electrodes, where the molecules are physisorbed onto the
graphene sheets by planar anchor groups. In our study, the sheets are pulled
away to vary the gap length and the relative atomic positions. The molecular
wires are also translated in directions parallel and perpendicular to the
sheets. We show that the energy position of the Breit-Wigner molecular
resonances is universal for a given molecule, in the sense that it is
independent of the details of the graphene edges, gaps lengths or of the
molecule positions. We discuss the need to converge carefully the k-sampling to
provide reasonable values of the conductance.Comment: 6 pages, 6 figure
Impact of edge shape on the functionalities of graphene-based single-molecule electronics devices
We present an ab-initio analysis of the impact of edge shape and
graphene-molecule anchor coupling on the electronic and transport
functionalities of graphene-based molecular electronics devices. We analyze how
Fano-like resonances, spin filtering and negative differential resistance
effects may or may not arise by modifying suitably the edge shapes and the
terminating groups of simple organic molecules. We show that the spin filtering
effect is a consequence of the magnetic behavior of zigzag-terminated edges,
which is enhanced by furnishing these with a wedge shape. The negative
differential resistance effect is originated by the presence of two degenerate
electronic states localized at each of the atoms coupling the molecule to
graphene which are strongly affected by a bias voltage. The effect could thus
be tailored by a suitable choice of the molecule and contact atoms if edge
shape could be controlled with atomic precision.Comment: 11 pages, 20 figure
Symmetry-induced interference effects in metalloporphyrin wires
Organo-metallic molecular structures where a single metallic atom is embedded
in the organic backbone are ideal systems to study the effect of strong
correlations on their electronic structure. In this work we calculate the
electronic and transport properties of a series of metalloporphyrin molecules
sandwiched by gold electrodes using a combination of density functional theory
and scattering theory. The impact of strong correlations at the central
metallic atom is gauged by comparing our results obtained using conventional
DFT and DFT+U approaches. The zero bias transport properties may or may not
show spin-filtering behavior, depending on the nature of the d state closest to
the Fermi energy. The type of d state depends on the metallic atom and gives
rise to interference effects that produce different Fano features. The
inclusion of the U term opens a gap between the d states and changes
qualitatively the conductance and spin-filtering behavior in some of the
molecules. We explain the origin of the quantum interference effects found as
due to the symmetry-dependent coupling between the d states and other molecular
orbitals and propose the use of these systems as nanoscale chemical sensors. We
also demonstrate that an adequate treatment of strong correlations is really
necessary to correctly describe the transport properties of metalloporphyrins
and similar molecular magnets
- …