198 research outputs found

    Brand and generic use of inhalation medication and frequency of switching in children and adults : a population-based cohort study

    Get PDF
    BACKGROUND: The expiration of patents of brand inhalation medications and the ongoing pressure on healthcare budgets resulted in a growing market for generics. AIM: To study the use of brand and generic inhalation medication and the frequency of switching between brand and generic and between devices. In addition, we investigated whether switching affected adherence. METHODS: From dispensing data from the Dutch PHARMO Database Network a cohort aged ≥ 5 years, using ≥ 1 year of inhalation medication between 2003 and 2012 was selected. Switching was defined as changing from brand to generic or vice versa. In addition, we studied change in aerosol delivery device type (e.g., DPI, pMDI, and nebulizers). Adherence was calculated using the medication possession ratio (MPR). RESULTS: The total cohort comprised 70,053 patients with 1,604,488 dispensations. Per calendar year, 5% switched between brand and generic inhalation medication and 5% switched between devices. Median MPRs over the first 12 months ranged between 33 and 55%. Median MPR over the total period was lower after switch from brand to generic and vice versa for formoterol (44.5 vs. 42.1 and 63.5 vs. 53.8) and beclomethasone (93.8 vs. 59.8 and 81.3 vs. 55.9). CONCLUSION: Per year, switching between brand and generic inhalation medication was limited to 5% of the patients, switching between device types was observed in 5% as well. Adherence to both generic and brand inhalation medication was low. Effect of switching on adherence was contradictory; depending on time period, medication and type, and direction of switching. Further research on reasons for switching and potential impact on clinical outcomes is warranted

    Evidence for Quantum Interference in SAMs of Arylethynylene Thiolates in Tunneling Junctions with Eutectic Ga-In (EGaIn) Top-Contacts

    Get PDF
    This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga2O3 as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10-1 A/cm2 at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 < |V| < 0.4 V. The calculations predict a higher value of I for AQ than for AH; however, the magnitude is highly dependent on the position of the Fermi energy, which cannot be calculated precisely. In this sense, the theoretical predictions and experimental conclusions agree that linearly conjugated AC is significantly more conductive than either cross-conjugated AQ or broken conjugate AH and that AQ and AH cannot necessarily be easily differentiated from each other. These observations are ascribed to quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.

    Brand and generic use of inhalation medication and frequency of switching in children and adults: A population-based cohort study

    Get PDF
    Background: The expiration of patents of brand inhalation medications and the ongoing pressure on healthcare budgets resulted in a growing market for generics. Aim: To study the use of brand and generic inhalation medication and the frequency of switching between brand and generic and between devices. In addition, we investigated whether switching affected adherence. Methods: From dispensing data from the Dutch PHARMO Database Network a cohort aged ≥ 5 years, using ≥ 1 year of inhalation medication between 2003 and 2012 was selected. Switching was defined as changing from brand to generic or vice versa. In addition, we studied change in aerosol delivery device type (e.g., DPI, pMDI, and nebulizers). Adherence was calculated using the medication possession ratio (MPR). Results: The total cohort comprised 70,053 patients with 1,604,488 dispensations. Per calendar year, 5% switched between brand and generic inhalation medication and 5% switched between devices. Median MPRs over the first 12 months ranged between 33 and 55%. Median MPR over the total period was lower after switch from brand to generic and vice versa for formoterol (44.5 vs. 42.1 and 63.5 vs. 53.8) and beclomethasone (93.8 vs. 59.8 and 81.3 vs. 55.9). Conclusion: Per year, switching between brand and generic inhalation medication was limited to 5% of the patients, switching between device types was observed in 5% as well. Adherence to both generic and brand inhalation medication was low. Effect of switching on adherence was contradictory; depending on time period, medication and type, and direction of switching. Further research on reasons for switching and potential impact on clinical outcomes is warranted

    Conductance statistics from a large array of sub-10 nm molecular junctions

    Full text link
    Devices made of few molecules constitute the miniaturization limit that both inorganic and organic-based electronics aspire to reach. However, integration of millions of molecular junctions with less than 100 molecules each has been a long technological challenge requiring well controlled nanometric electrodes. Here we report molecular junctions fabricated on a large array of sub-10 nm single crystal Au nanodots electrodes, a new approach that allows us to measure the conductance of up to a million of junctions in a single conducting Atomic Force Microscope (C-AFM) image. We observe two peaks of conductance for alkylthiol molecules. Tunneling decay constant (beta) for alkanethiols, is in the same range as previous studies. Energy position of molecular orbitals, obtained by transient voltage spectroscopy, varies from peak to peak, in correlation with conductance values.Comment: ACS Nano (in press

    Vertebrobasilar artery calcification: Prevalence and risk factors in the general population

    Get PDF
    Background and aims: Arteriosclerosis in the vertebrobasilar arteries may play an important role in the etiology of posterior circulation strokes, but little is known on its prevalence, its correlation with arteriosclerosis in other major arteries, and its risk factors. Hence, we investigated these aspects of vertebrobasilar artery calcification (VBAC) as marker of vertebrobasilar arteriosclerosis. Methods: To quantify VBAC, 2483 participants (mean age: 69.2 years, 52% female) from the Rotterdam Study underwent non-enhanced computed tomography. We determined the presence and volume of VBAC. Next, using Spearman's rank correlation, we examined the correlation between the volume of VBAC and the volume of coronary artery calcification (CAC), aortic arch calcification (AAC), and both extracranial- (ECAC), and intracranial carotid artery calcification (ICAC). Finally, we investigated associations of cardiovascular risk factors with the presence and volume of VBAC using logistic and linear regression models. Results: The overall prevalence of VBAC was 21.0% (median volume: 7.3 mm3 [IQR: 2.0–25.6]). Correlations between VBAC and CAC, AAC, ECAC, and ICAC were weak to moderate (men: 0.33, 0.28, 0.30, 0.36; women: 0.26, 0.24, 0.24, 0.35, respectively). Hypertension, diabetes, and current smoking were associated with the presence of VBAC in both sexes (men: OR 1.67 [95%-CI, 1.14–2.46], 1.60 [95%-CI, 1.10–2.34], 1.48 [95%-CI, 1.02–2.14]; women: OR 1.51 [95%-CI, 1.01–2.26], 1.56 [95%-CI, 1.02–2.39], 1.53 [95%CI, 1.00–2.33], respectively). In men, obesity was also associated with VBAC (1.42 [95%-CI, 1.00–2.02]). Conclusions: VBAC occurs in over 20% of elderly community dwelling persons. Cardiovascular risk factors are associated with VBAC with similar patterns for men and women

    Towards molecular electronics with large-area molecular junctions

    Get PDF
    Electronic transport through single molecules has been studied extensively by academic(1-8) and industrial(9,10) research groups. Discrete tunnel junctions, or molecular diodes, have been reported using scanning probes(11,12), break junctions(13,14), metallic crossbars(6) and nanopores(8,15). For technological applications, molecular tunnel junctions must be reliable, stable and reproducible. The conductance per molecule, however, typically varies by many orders of magnitude(5). Self-assembled monolayers (SAMs) may offer a promising route to the fabrication of reliable devices, and charge transport through SAMs of alkanethiols within nanopores is well understood, with non-resonant tunnelling dominating the transport mechanism(8). Unfortunately, electrical shorts in SAMs are often formed upon vapour deposition of the top electrode(16-18), which limits the diameter of the nanopore diodes to about 45 nm. Here we demonstrate a method to manufacture molecular junctions with diameters up to 100 mu m with high yields (>95 per cent). The junctions show excellent stability and reproducibility, and the conductance per unit area is similar to that obtained for benchmark nanopore diodes. Our technique involves processing the molecular junctions in the holes of a lithographically patterned photoresist, and then inserting a conducting polymer interlayer between the SAM and the metal top electrode. This simple approach is potentially low-cost and could pave the way for practical molecular electronics

    Incidence, risk factors and re-exacerbation rate of severe asthma exacerbations in a multinational, multidatabase pediatric cohort study

    Get PDF
    Background: There are sparse real-world data on severe asthma exacerbations (SAE) in children. This multinational cohort study assessed the incidence of and risk factors for SAE and the incidence of asthma-related rehospitalization in children with asthma. Methods: Asthma patients 5-17 years old with ≥1 year of follow-up were identified in six European electronic databases from the Netherlands, Italy, the UK, Denmark and Spain in 2008-2013. Asthma was defined as ≥1 asthma-specific disease code within 3 months of prescriptions/dispensing of asthma medication. Severe asthma was defined as high-dosed inhaled corticosteroids plus a second controller. SAE was defined by systemic corticosteroids, emergency department visit and/or hospitalization all for reason of asthma. Risk factors for SAE were estimated by Poisson regression analyses. Results: The cohort consisted of 212 060 paediatric asthma patients contributing to 678 625 patient-years (PY). SAE rates ranged between 17 and 198/1000 PY and were higher in severe asthma and highest in severe asthma patients with a history of exacerbations. Prior SAE (incidence rate ratio 3-45) and younger age increased the SAE risk in all countries, whereas obesity, atopy and GERD were a risk factor in some but not all countries. Rehospitalization rates were up to 79% within 1 year. Conclusions: In a real-world setting, SAE rates were highest in children with severe asthma with a history of exacerbations. Many severe asthma patients were rehospitalized within 1 year. Asthma management focusing on prevention of SAE is important to reduce the burden of asthma
    corecore