626 research outputs found

    Improving neurophysiological biomarkers for functional myoclonic movements.

    Get PDF
    INTRODUCTION: Differentiating between functional jerks (FJ) and organic myoclonus can be challenging. At present, the only advanced diagnostic biomarker to support FJ is the Bereitschaftspotential (BP). However, its sensitivity is limited and its evaluation subjective. Recently, event related desynchronisation in the broad beta range (13-45 Hz) prior to functional generalised axial (propriospinal) myoclonus was reported as a possible complementary diagnostic marker for FJ. Here we study the value of ERD together with a quantified BP in clinical practice. METHODS: Twenty-nine patients with FJ and 16 patients with cortical myoclonus (CM) were included. Jerk-locked back-averaging for determination of the 'classical' and quantified BP, and time-frequency decomposition for the event related desynchronisation (ERD) were performed. Diagnostic gain, sensitivity and specificity were obtained for individual and combined techniques. RESULTS: We detected a classical BP in 14/29, a quantitative BP in 15/29 and an ERD in 18/29 patients. At group level we demonstrate that ERD in the broad beta band preceding a jerk has significantly higher amplitude in FJ compared to CM (respectively -0.14 ± 0.13 and +0.04 ± 0.09 (p < 0.001)). Adding ERD to the classical BP achieved an additional diagnostic gain of 53%. Furthermore, when combining ERD with quantified and classical BP, an additional diagnostic gain of 71% was achieved without loss of specificity. CONCLUSION: Based on the current findings we propose to the use of combined beta ERD assessment and quantitative BP analyses in patients with a clinical suspicion for all types of FJ with a negative classical BP

    Wake response to an ocean-feedback mechanism: Madeira Island case study

    Full text link
    This discussion focused on the numerical study of a wake episode. The Weather Research and Forecasting model was used in a downscale mode. The current literature focuses the discussion on the adiabatic dynamics of atmospheric wakes. Changes in mountain height and consequently on its relation to the atmospheric inversion layer should explain the shift in wake regimes: from a 'strong-wake' to a 'weak-wake' scenario. Nevertheless, changes in SST variability can also induce similar regime shifts. Increase in evaporation, contributes to increase convection and thus to an uplift of the stratified atmospheric layer, above the critical height, with subsequent internal gravity wave activity.Comment: Under review proces

    Instrumented classification of patients with early onset ataxia or developmental coordination disorder and healthy control children combining information from three upper limb SARA tests

    Get PDF
    Background: Early Onset Ataxia (EOA) and Developmental Coordination Disorder (DCD) share several phenotypical characteristics, which can be clinically hard to distinguish. Aim: To combine quantified movement information from three tests obtained from inertial measure-ments units (IMUs), to improve the classification of EOA and DCD patients and healthy controls compared to using a single test. Methods: Using IMUs attached to the upper limbs, we collected data from EOA, DCD and healthy control children while they performed the three upper limb tests (finger to nose, finger chasing and fast alter -nating movements) from the Scale for the Assessment and Rating of Ataxia (SARA) test. The most relevant features for classification were extracted. A random forest classifier with 300 trees was used for classification. The area under the receiver operating curve (ROC-AUC) and precision-recall plots were used for classification performance assessment. Results: The most relevant discerning features concerned smoothness and velocity of movements. Classification accuracy on group level was 85.6% for EOA, 63.5% for DCD and 91.2% for healthy control children. In comparison, using only the finger to nose test for classification 73.7% of EOA and 53.4% of DCD patients and 87.2% of healthy controls were accurately classified. For the ROC/precision recall plots the AUC was 0.96/0.89 for EOA, 0.92/0.81 for DCD and 0.97/0.94 for healthy control children. Discussion: Using quantified movement information from all three SARA-kinetic upper limb tests improved the classification of all diagnostic groups, and in particular of the DCD group compared to using only the finger to nose test. (c) 2021 The Authors. Published by Elsevier Ltd on behalf of European Paediatric Neurology Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Inter-muscular coherence in speed skaters with skater's cramp

    Get PDF
    Introduction: Skater's cramp is a career-ending movement disorder in expert speed skaters noted to be a likely task-specific dystonia. In other movement disorders, including task-specific dystonia, studies have found evidence of central dysregulation expressed as higher inter-muscular coherence. We looked at whether inter-muscular coherence was higher in affected skaters as a possible indicator that it is centrally driven, and by extension further evidence it is a task-specific dystonia.Methods: In 14 affected and 14 control skaters we calculated inter-muscular coherence in the theta-band in a stationary task where tonic muscle activation was measured at 10%, 20% and 50% of maximum voluntary contraction. Additionally, we calculated wavelet coherence while skating at key moments in the stroke cycle.Results: Coherence did not differ in the stationary activation task. While skating, coherence was higher in the impacted leg of affected skaters compared to their non-impacted leg, p = .05, η2 = 0.031, and amplitude of electromyography correlated with coherence in the impacted leg, p = .009, R2adjusted = 0.41. A sub-group of severely affected skaters (n = 6) had higher coherence in the impacted leg compared to the left and right leg of controls, p = .02, Cohen's d = 1.59 and p = .01, Cohen's d = 1.63 respectively. Results were less clear across the entire affected cohort probably due to a diverse case-mix.Conclusion: Our results of higher coherence in certain severe cases of skater's cramp is preliminary evidence of a central dysregulation, making the likelihood it is a task-specific dystonia higher.</p

    Three Days of Measurement Provide Reliable Estimates of Daily Tremor Characteristics:A Pilot Study in Organic and Functional Tremor Patients

    Get PDF
    Background: Long-term tremor recording is particularly useful for the assessment of overall severity and therapeutic interventions in tremor patients. The purpose of this paper is to investigate the optimal number of days needed to obtain reliable estimates of tremor percentage, tremor frequency variability and tremor intensity in tremor patients using long-term tremor recordings. Methods: Participants were 18 years or older and were diagnosed with tremor by a movement disorders specialist. Participants wore an accelerometer on the wrist of the most affected arm during 30 consecutive days. Tremor presence, frequency variability and intensity were calculated per day. We used reliability analysis to determine the minimum number of days needed to obtain reliable estimates of these tremor characteristics. Results: Data from 36 adult organic (OrgT) and functional tremor (FT) patients (24 males; mean age 63.9 +/- 11.9 years; 15 FT) were analyzed. Using five hours per day, one day of measurement is enough, except for tremor frequency variability in the OrgT group, where three days are needed and for tremor intensity where two days are always needed. Discussion: Visual analysis suggested that reliability can be increased considerably by using data from three days instead of one day even when using six hours of data per day. Three days with at least three hours of tremor data provide estimates of tremor percentage, frequency variability and intensity with good to excellent reliability, both for organic and functional tremor

    The diagnostic value of clinical neurophysiology in hyperkinetic movement disorders:A systematic review

    Get PDF
    Introduction: To guide the neurologist and neurophysiologist with interpretation and implementation of clinical neurophysiological examinations, we aim to provide a systematic review on evidence of electrophysiological features used to differentiate between hyperkinetic movement disorders. Methods: A PRISMA systematic search and QUADAS quality evaluation has been performed in PubMed to identify diagnostic test accuracy studies comparing electromyography and accelerometer features. We included papers focusing on tremor, dystonia, myoclonus, chorea, tics and ataxia and their functional variant. The features were grouped as 1) basic features (e.g., amplitude, frequency), 2) the influence of tasks on basic features (e.g., entrainment, distraction), 3) advanced analyses of multiple signals, 4) and diagnostic tools combining features. Results: Thirty-eight cross-sectional articles were included discussing tremor (n = 28), myoclonus (n = 5), dystonia (n = 5) and tics (n = 1). Fifteen were rated as ‘high quality’. In tremor, the basic and task-related features showed great overlap between clinical tremor syndromes, apart from rubral and enhanced physiological tremor. Advanced signal analyses were best suited for essential, parkinsonian and functional tremor, and cortical, non-cortical and functional jerks. Combinations of electrodiagnostic features could identify essential, enhanced physiological and functional tremor. Conclusion: Studies into the diagnostic accuracy of electrophysiological examinations to differentiate between hyperkinetic movement disorders have predominantly been focused on clinical tremor syndromes. No single feature can differentiate between them all; however, a combination of analyses might improve diagnostic accuracy

    Electrophysiologic testing aids diagnosis and subtyping of myoclonus

    Get PDF
    OBJECTIVE: To determine the contribution of electrophysiologic testing in the diagnosis and anatomical classification of myoclonus. METHODS: Participants with a clinical diagnosis of myoclonus were prospectively recruited, each undergoing a videotaped clinical examination and battery of electrophysiologic tests. The diagnosis of myoclonus and its subtype was reviewed after 6 months in the context of the electrophysiologic findings and specialist review of the videotaped clinical examination. RESULTS: Seventy-two patients with myoclonus were recruited. Initial clinical anatomical classification included 25 patients with cortical myoclonus, 7 with subcortical myoclonus, 2 with spinal myoclonus, and 15 with functional myoclonic jerks. In 23 cases, clinical anatomical classification was not possible because of the complexity of the movement disorder. Electrophysiologic testing was completed in 66, with agreement of myoclonus in 60 (91%) and its subtype in 28 (47%) cases. Subsequent clinical review by a movement disorder specialist agreed with the electrophysiologic findings in 52 of 60; in the remaining 8, electrophysiologic testing was inconclusive. CONCLUSIONS: Electrophysiologic testing is an important additional tool in the diagnosis and anatomical classification of myoclonus, also aiding in decision-making regarding therapeutic management. Further development of testing criteria is necessary to optimize its use in clinical practice

    Intermuscular coherence as a biomarker of subthalamic nucleus deep brain stimulation efficacy in Parkinson's disease

    Get PDF
    OBJECTIVE: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established treatment in advanced Parkinson's disease (PD). However, the clinical outcome after STN-DBS is variable. The aim of this study was to explore the coherence of antagonistic muscles measured with electromyography (EMG) as novel biomarker of STN-DBS efficacy in PD. METHODS: EMG of bilateral wrist and upper arm antagonistic muscles of 21 PD patients was recorded during three standardized motor tasks. Patients were measured one day prior to DBS surgery (pre-DBS) and 6 months afterwards (post-DBS). Coherence analyses were performed on the antagonistic muscle pairs. Pearson correlations between intermuscular coherence and clinical performance were calculated. RESULTS: Intermuscular coherence during each of the different co-contraction tasks significantly correlated to UPDRS-III bradykinesia scores (p < 0.01). In other words, higher intermuscular coherence is associated with more severe PD symptoms. Moreover, coherence changes (pre-DBS - post-DBS coherence) correlated to clinical score changes after DBS (p < 0.01) and pre-DBS coherence correlated to this clinical score change as well (p < 0.01). CONCLUSIONS: Higher pre-DBS coherence of antagonistic arm muscles is correlated to worsening of clinical PD state and higher intermuscular coherence predicts enhanced clinical improvement. SIGNIFICANCE: We propose that pre-DBS intermuscular coherence could be developed into a predictor of STN-DBS clinical outcome. It could aid patient selection and adaptive stimulation algorithms for DBS
    corecore