292 research outputs found
IgY antibodies: The promising potential to overcome antibiotic resistance
Antibiotic resistant bacteria are a growing threat to global health security. Whilst the emergence of antimicrobial resistance (AMR) is a natural phenomenon, it is also driven by antibiotic exposure in health care, agriculture, and the environment. Antibiotic pressure and inappropriate use of antibiotics are important factors which drive resistance. Apart from their use to treat bacterial infections in humans, antibiotics also play an important role in animal husbandry. With limited antibiotic options, alternate strategies are required to overcome AMR. Passive immunization through oral, nasal and topical administration of egg yolk-derived IgY antibodies from immunized chickens were recently shown to be effective for treating bacterial infections in animals and humans. Immunization of chickens with specific antigens offers the possibility of creating specific antibodies targeting a wide range of antibiotic-resistant bacteria. In this review, we describe the growing global problem of antimicrobial resistance and highlight the promising potential of the use of egg yolk IgY antibodies for the treatment of bacterial infections, particularly those listed in the World Health Organization priority list
Glioblastoma stem cells induce quiescence in surrounding neural stem cells via Notch signalling.
There is increasing evidence demonstrating that adult neural stem cells (NSCs) are a cell of origin of glioblastoma. Here we analyzed the interaction between transformed and wild-type NSCs isolated from the adult mouse subventricular zone niche. We found that transformed NSCs are refractory to quiescence-inducing signals. Unexpectedly, we also demonstrated that these cells induce quiescence in surrounding wild-type NSCs in a cell–cell contact and Notch signaling-dependent manner. Our findings therefore suggest that oncogenic mutations are propagated in the stem cell niche not just through cell-intrinsic advantages, but also by outcompeting neighboring stem cells through repression of their proliferation
Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2
In December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China with serious impacts on global health and economy that is still ongoing. Although interspecies transmission of coronaviruses is common and well documented, each coronavirus has a narrowly restricted host range. Coronaviruses utilize different receptors to mediate membrane fusion and replication in the cell cytoplasm. The interplay between the receptor-binding domain (RBD) of coronaviruses and their coevolution are determinants for host susceptibility. The recently emerged SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic and has also been reported in domestic and wild animals, raising the question about the responsibility of animals in virus evolution. Additionally, the COVID-19 pandemic might also substantially have an impact on animal production for a long time. In the present review, we discussed the diversity of coronaviruses in animals and thus the diversity of their receptors. Moreover, the determinants of the susceptibility of SARS-CoV-2 in several animals, with special reference to the current evidence of SARS-CoV-2 in animals, were highlighted. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to mitigate the threat for both humans and animals
Genetic diversity of hepatitis E virus (HEV) in imported and domestic camels in Saudi Arabia
Camels gained attention since the discovery of MERS-CoV as intermediary hosts for potentially epidemic zoonotic viruses. DcHEV is a novel zoonotic pathogen associated with camel contact. This study aimed to genetically characterize DcHEV in domestic and imported camels in Saudi Arabia. DcHEV was detected by RT-PCR in serum samples, PCR-positive samples were subjected to sequencing and phylogenetic analyses. DcHEV was detected in 1.77% of samples with higher positivity in domestic DCs. All positive imported dromedaries were from Sudan with age declining prevalence. Domestic DcHEV sequences clustered with sequences from Kenya, Somalia, and UAE while imported sequences clustered with one DcHEV isolate from UAE and both sequences clustered away from isolates reported from Pakistan. Full-genome sequences showed 24 amino acid difference with reference sequences. Our results confirm the detection of DcHEV in domestic and imported DCs. Further investigations are needed in human and camel populations to identify DcHEV potential zoonosis threat
High Genetic Diversity of Human Rhinovirus among Pilgrims with Acute Respiratory Tract Infections during 2019 Hajj Pilgrimage Season
OBJECTIVES: Acute Respiratory tract infections (ARI) due to Human Rhinoviruses (HRV) are common in pilgrims during the annual Hajj pilgrimage. The objective of this study was to investigate the genetic diversity of HRV among pilgrims with respiratory symptoms during Hajj 2019. METHODS: HRV infection was detected using multiplex real time RT-PCR. Cycle sequencing was performed on positive samples and the sequences were subjected to phylogenetic analysis. RESULTS: 19 HRV-positive respiratory samples were sequenced. All three serotypes of HRV were identified: HRV-A (13; [68.42%)) was more common than HRV-B (2; [10.53%]), and HRV-C (4; [21.05%]). HRV-A species were found to be of genotypes A101, A21, A30, A57, A23, A60 and A11. HRV-B species belonged to genotypes B4 and B84, and HRV-C species were of genotypes C15, C3 and C56. CONCLUSIONS: Sequencing studies of respiratory tract viruses in pilgrims are important. We provide preliminary evidence of high diversity of HRV genotypes circulating in pilgrims in a restricted area during Hajj. This requires further clinical and sequencing studies of viral pathogens in larger consorts of overseas and local pilgrims
Evaluation of In Vitro Antioxidant, Anti-Obesity, and Anti-Diabetic Activities of
Opuntia ficus cladodes (OFC) are considered one of the wastes that result from opuntia cultivation, and their disposal by traditional methods results in many environmental problems. Therefore, this study was conducted with two aims. The first was the production of OFC gel, and the evaluation of its in vitro antioxidant (by two methods, DPPH and ABTS), anti-obesity, and anti-diabetic activities. The second was an investigation of the effects of different concentrations of this gel (0, 50, and 100%) as an edible coating on the quality of shrimp during 8 days of refrigerated storage. The results showed that this gel was characterised by a high content of ash (10.42%), total carbohydrates (75.17%), and total phenols (19.79 mg GAE/g). OFC gel contained six types of sugars: arabinose, xylose, galactose, rhamnose, glucose, and uronic acid, and the most abundant was xylose (36.72%). It is also clear from the results that the OFC gel had high antioxidant properties, which were higher against DPPH than ABTS at the same concentration. OFC gel showed a high inhibition activity against lipase, α-glycosidase, and α-amylase enzymes, and their IC50 values were 1.43 mg/mL, 0.78 mg/mL, and 0.57 mg/mL, respectively. The results also stated that shrimp coated with OFC gel had lower pH, drip loss, TVB-N, and TBA values through the days of refrigerated storage. Moreover, the shrimp coated with 100% OFC gel were better than those coated with 50% OFC gel. In conclusion, OFC gel showed high potency as active antioxidant, for its enzyme anti-activities, and as an edible coating for shrimp
6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation
The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg(−1)), and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3–3 μM) on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE). To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride (100 μM), guanylate cyclase inhibitor methylene blue (5 μM), calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM), and cyclooxygenase inhibitor indomethacin (5 μM) were added 30 minutes before assessing the direct vasorelaxant effect of 6-gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3–10 μM) alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-l-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially attributed to its ability to increase the production of NO and stimulation of cyclic guanosine monophosphate
Cardioprotection by 6-gingerol in diabetic rats
The current study was conducted to evaluate the effect of 6-gingerol (6G) on cardiac complications in streptozotocin (STZ)-induced diabetic (DM) rats. STZ-induced DM rats (single 50 mg/kg i.p. injection, 15 days prior to drug treatment) or time-matched controls were treated with 6G (75 mg/day route orally). After a further 8 weeks, blood was collected for biochemical analysis and 8-isoprostenol was measured in urine. Cardiac hemodynamics and ECG was assessed. 6G significantly attenuated the increased level of blood glucose in diabetic rats and improved cardiac hemodynamics in including RR interval, max dP/dt, min dP/dt and Tau. In addition, 6G alleviated the elevated ST segment, T amplitude and R amplitude with no significant effect on disturbed levels of adiponectin, TGF-β or 8-isoprostenol induced by diabetes. The results showed that treatment with 6G has an ameliorative effect on cardiac dysfunction induced by diabetes. Which may be not related to its potential antioxidant effect
Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy - Achieving global consensus and visibility for cellular host-directed therapies
As of May 17th 2020, the novel coronavirus disease 2019 (COVID-19) pandemic has caused 307,395 deaths worldwide, out of 3,917,366 cases reported to the World Health Organization. No specific treatments for reducing mortality or morbidity are yet available. Deaths from COVID-19 will continue to rise globally until effective and appropriate treatments and/or vaccines are found. In search of effective treatments, the global medical, scientific, pharma and funding communities have rapidly initiated over 500 COVID-19 clinical trials on a range of antiviral drug regimens and repurposed drugs in various combinations. A paradigm shift is underway from the current focus of drug development targeting the pathogen, to advancing cellular Host-Directed Therapies (HDTs) for tackling the aberrant host immune and inflammatory responses which underlie the pathogenesis of SARS-CoV-2 and high COVID-19 mortality rates. We focus this editorial specifically on the background to, and the rationale for, the use and evaluation of mesenchymal stromal (Stem) cells (MSCs) in treatment trials of patients with severe COVID-19 disease. Currently, the ClinicalTrials.gov and the WHO Clinical Trials Registry Platform (WHO ICTRP) report a combined 28 trials exploring the potential of MSCs or their products for treatment of COVID-19. MSCs should also be trialed for treatment of other circulating WHO priority Blueprint pathogens such as MERS-CoV which causes upto 34% mortality rates. It's about time funding agencies invested more into development MSCs per se, and also for a range of other HDTs, in combination with other therapeutic interventions. MSC therapy could turn out to be an important contribution to bringing an end to the high COVID-19 death rates and preventing long-term functional disability in those who survive disease
- …