592 research outputs found

    Normal zone in YBa2Cu3O6+xYBa_2Cu_3O_{6+x}-coated conductors

    Full text link
    We consider the distribution of an electric field in YBCO-coated conductors for a situation in which the DC transport current is forced into the copper stabilizer due to a weak link -- a section of the superconducting film with a critical current less than the transport current. The electric field in the metal substrate is also discussed. The results are compared with recent experiments on normal zone propagation in coated conductors for which the substrate and stabilizer are insulated from each other. The potential difference between the substrate and stabilizer, and the electric field in the substrate outside the normal zone can be accounted for by a large screening length in the substrate, comparable to the length of the sample. During a quench, the electric field inside the interface between YBCO and stabilizer, as well as in the buffer layer, can be several orders of magnitude greater than the longitudinal macroscopic electric field inside the normal zone. We speculate on the possibility of using possible microscopic electric discharges caused by this large (∼\sim kV/cm) electric field as a means to detect a quench.Comment: 8 pages, 4 figure

    The effects of superconductor-stabilizer interfacial resistance on quench of current-carrying coated conductor

    Full text link
    We present the results of numerical analysis of a model of normal zone propagation in coated conductors. The main emphasis is on the effects of increased contact resistance between the superconducting film and the stabilizer on the speed of normal zone propagation, the maximum temperature rise inside the normal zone, and the stability margins. We show that with increasing contact resistance the speed of normal zone propagation increases, the maximum temperature inside the normal zone decreases, and stability margins shrink. This may have an overall beneficial effect on quench protection quality of coated conductors. We also briefly discuss the propagation of solitons and development of the temperature modulation along the wire.Comment: To be published in Superconductor Science and Technology. This preprint contains one animated figure (Fig. 6(a)). when asked whether you want to play the content, click "Play". Acrobat Reader (Windows and Mac, but not Linux) will play embedded flash movies. In the printed copy Fig. 6(b) will show the temperature profile at gamma t=15

    Two regimes for effects of surface disorder on the zero-bias conductance peak of tunnel junctions involving d-wave superconductors

    Full text link
    Impurity-induced quasiparticle bound states on a pair-breaking surface of a d-wave superconductor are theoretically described, taking into account hybridization of impurity- and surface-induced Andreev states. Further a theory for effects of surface disorder (of thin impurity surface layer) on the low-bias conductance of tunnel junctions is developed. We find a threshold ncn_c for surface impurity concentration nSn_S, which separates the two regimes for surface impurity effects on the zero-bias conductance peak (ZBCP). Below the threshold, surface impurities do not broaden the ZBCP, but effectively reduce its weight and generate impurity bands. For low nSn_S impurity bands can be, in principle, resolved experimentally, being centered at energies of bound states induced by an isolated impurity on the surface. For larger nSn_S impurity bands are distorted, move to lower energies and, beginning with the threshold concentration nS=ncn_S=n_c, become centered at zero energy. With increasing nSn_S above the threshold, the ZBCP is quickly destroyed in the case of strong scatterers, while it is gradually suppressed and broaden in the presence of weak impurity potentials. More realistic cases, taking into account additional broadening, not related to the surface disorder, are also considered.Comment: 9 pages, 7 figure

    Designing self-assembling kinetics with differentiable statistical physics models

    Get PDF
    The inverse problem of designing component interactions to target emergent structure is fundamental to numerous applications in biotechnology, materials science, and statistical physics. Equally important is the inverse problem of designing emergent kinetics, but this has received considerably less attention. Using recent advances in automatic differentiation, we show how kinetic pathways can be precisely designed by directly differentiating through statistical physics models, namely free energy calculations and molecular dynamics simulations. We consider two systems that are crucial to our understanding of structural self-assembly: bulk crystallization and small nanoclusters. In each case, we are able to assemble precise dynamical features. Using gradient information, we manipulate interactions among constituent particles to tune the rate at which these systems yield specific structures of interest. Moreover, we use this approach to learn nontrivial features about the high-dimensional design space, allowing us to accurately predict when multiple kinetic features can be simultaneously and independently controlled. These results provide a concrete and generalizable foundation for studying nonstructural self-assembly, including kinetic properties as well as other complex emergent properties, in a vast array of systems

    Break-junction tunneling measurements of the high-\u3ci\u3eT\u3c/i\u3e\u3csub\u3e\u3ci\u3ec\u3c/i\u3e\u3c/sub\u3e superconductor Y\u3csub\u3e1\u3c/sub\u3eBa\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e9- δ \u3c/sub\u3e

    Get PDF
    Current-voltage tunneling characteristics in a high-critical-temperature superconducting material containing predominately Y1Ba2Cu3O9- δ have been measured using the break-junction technique. Sharp gap structure was observed, with the largest superconductive energy gap measured to be Δ=19.5±1 meV, assuming a superconductor-insulator-superconductor junction. This energy gap corresponds to 2Δ/kBTc=4.8 at T=4 K, for a critical temperature of 93 K (midpoint of the resistive transition)

    Resonance fluorescence in a waveguide geometry

    Full text link
    We show how to calculate the first- and second-order statistics of the scattered fields for an arbitrary intensity coherent state light field interacting with a two-level system in a waveguide geometry. Specifically, we calculate the resonance fluorescence from the qubit, using input-output formalism. We derive the transmission and reflection coefficients, and illustrate the bunching and anti-bunching of light that is scattered in the forward and backward directions, respectively. Our results agree with previous calculations on one- and two-photon scattering as well as those that are based on the master equation approach.Comment: 8 pages, 3 figures and supplementary material (Mathematica code). This is the published version: typos are fixed, conclusion section is expanded, references are update

    Long-range nonlocal flow of vortices in narrow superconducting channels

    Get PDF
    We report a new nonlocal effect in vortex matter, where an electric current confined to a small region of a long and sufficiently narrow superconducting wire causes vortex flow at distances hundreds of inter-vortex separations away. The observed remote traffic of vortices is attributed to a very efficient transfer of a local strain through the one-dimensional vortex lattice, even in the presence of disorder. We also observe mesoscopic fluctuations in the nonlocal vortex flow, which arise due to "traffic jams" when vortex arrangements do not match a local geometry of a superconducting channel.Comment: a slightly longer version of a tentatively accepted PR
    • …
    corecore