23 research outputs found

    Mitral Valve Transcatheter Edge-to-Edge Repair:1-Year Outcomes From the MiCLASP Study

    Get PDF
    Background: Mitral transcatheter edge-to-edge repair (M-TEER) is a guideline-recommended treatment option for patients with severe symptomatic mitral regurgitation (MR). Outcomes with the PASCAL system in a post-market setting have not been established. Objectives: The authors report 30-day and 1-year outcomes from the MiCLASP (Transcatheter Repair of Mitral Regurgitation with Edwards PASCAL Transcatheter Valve Repair System) European post-market clinical follow-up study. Methods: Patients with symptomatic, clinically significant MR were prospectively enrolled. The primary safety endpoint was clinical events committee–adjudicated 30-day composite major adverse event rate and the primary effectiveness endpoint was echocardiographic core laboratory–assessed MR severity at discharge compared with baseline. Clinical, echocardiographic, functional, and quality-of-life outcomes were assessed at 1 year. Results: A total of 544 patients were enrolled (59% functional MR, 30% degenerative MR). The 30-day composite major adverse event rate was 6.8%. MR reduction was significant from baseline to discharge and sustained at 1 year with 98% of patients achieving MR ≤2+ and 82.6% MR ≤1+ (all P &lt; 0.001 vs baseline). One-year Kaplan-Meier estimate for survival was 87.3%, and freedom from heart failure hospitalization was 84.3%. Significant functional and quality-of-life improvements were observed at 1 year, including 71.6% in NYHA functional class I/II, 14.4-point increase in Kansas City Cardiomyopathy Questionnaire score, and 24.2-m improvement in 6-minute walk distance (all P &lt; 0.001 vs baseline). Conclusions: One-year outcomes of this large cohort from the MiCLASP study demonstrate continued safety and effectiveness of M-TEER with the PASCAL system in a post-market setting. Results demonstrate high survival and freedom from heart failure hospitalization, significant and sustained MR reduction, and improvements in symptoms, functional capacity, and quality of life.</p

    Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast

    Get PDF
    Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1(+)). We demonstrate that the act of transcribing nc-tgp1 over the tgp1(+) promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1(+) without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1(+) is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1(+) expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1(+) even in repressive conditions. Notably, drug sensitivity results directly from tgp1(+) expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast

    Defect Study in CoCrFeMnNi High Entropy Alloy by Positron Annihilation Lifetime Spectroscopy

    No full text
    Positron annihilation lifetime spectroscopy is applied to study the crystal defects in CoCrFeMnNi high entropy alloy. The material is measured in the as‐received (electro eroded; non‐etched) state; it shows a defect‐related positron lifetime of 220 ps, corresponding most likely to divacancies, with a relatively high concentration. Furthermore, this sample is annealed in the temperature range up to 1000 K and positron lifetime is measured after each annealing step. The average positron lifetime is found to decrease with annealing and reaches 121 ps after annealing at 1000 K, indicating the existence of some remaining defects in the material. To show whether the observed defects are present in the bulk sample or only in the surface area, another sample is deeply etched and shows only one lifetime component of 112 ps, which is assigned to the defect‐free bulk lifetime in this alloy. This study indicated that the investigates high entropy alloy (in etched state) does not contain open‐volume defects within the sensitivity range of positron annihilation. Here, the defects observed in the non‐etched sample are present in the subsurface region, which are assumed to be generated most probably during wire‐erosion of the samples. In addition, X‐ray diffraction results indicate that the crystal structure is FCC with a lattice constant of (3.597 ± 0.002) Å, which is not affected by annealing

    The long non-coding RNA Fendrr

    No full text

    The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells

    No full text
    The long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), also known as MALAT-1 or NEAT2 (nuclear-enriched abundant transcript 2), is a highly conserved nuclear noncoding RNA (ncRNA) and a predictive marker for metastasis development in lung cancer. To uncover its functional importance, we developed a MALAT1 knockout model in human lung tumor cells by genomically integrating RNA destabilizing elements using zinc finger nucleases. The achieved 1,000-fold MALAT1 silencing provides a unique loss-of-function model. Proposed mechanisms of action include regulation of splicing or gene expression. In lung cancer, MALAT1 does not alter alternative splicing but actively regulates gene expression including a set of metastasis-associated genes. Consequently, MALAT1-deficient cells are impaired in migration and form fewer tumor nodules in a mouse xenograft. Antisense oligonucleotides (ASO) blocking MALAT1 prevent metastasis formation after tumor implantation. Thus, targeting MALAT1 with ASOs provides a potential therapeutic approach to prevent lung cancer metastasis with this ncRNA serving as both predictive marker and therapeutic target. Finally, regulating gene expression, but not alternative splicing, is the critical function of MALAT1 in lung cancer metastasis. In summary, 10 years after the discovery of the lncRNA MALAT1 as a biomarker for lung cancer metastasis, our loss-of-function model unravels the active function of MALAT1 as a regulator of gene expression governing hallmarks of lung cancer metastasis. © 2012 American Association for Cancer Research

    Overexpression of the anti-apoptotic protein AVEN contributes to increased malignancy in hematopoietic neoplasms.

    No full text
    AVEN has been identified as an inhibitor of apoptosis, which binds to the adaptor protein, APAF-1, and thereby prevents apoptosome formation and mitochondrial apoptosis. Recent data have demonstrated high expression levels of AVEN messenger RNA in acute leukemias as well as a positive correlation between AVEN mRNA overexpression and poor prognosis in childhood acute lymphoblastic leukemia. On the basis of these data, we investigated the potential involvement of AVEN in tumorigenesis. First, we confirmed the overexpression of AVEN in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) patient samples. We then established a transgenic mouse model with T-cell-specific overexpression of AVEN, with which we demonstrated the oncogenic cooperation of AVEN with heterozygous loss of p53. Finally, we used a subcutaneous xenograft mouse model to show that AVEN knockdown in the T-ALL cell lines, MOLT-4 and CCRF-CEM, and in the acute myeloblastic leukemia cell line, Kasumi-1, leads to a halt in tumor growth owing to the increased apoptosis and decreased proliferation of tumor cells. Collectively, our data demonstrate that the anti-apoptotic molecule, AVEN, functions as an oncoprotein in hematopoietic neoplasms

    Mitral Valve Transcatheter Edge-to-Edge Repair:1-Year Outcomes From the MiCLASP Study

    Get PDF
    Background: Mitral transcatheter edge-to-edge repair (M-TEER) is a guideline-recommended treatment option for patients with severe symptomatic mitral regurgitation (MR). Outcomes with the PASCAL system in a post-market setting have not been established. Objectives: The authors report 30-day and 1-year outcomes from the MiCLASP (Transcatheter Repair of Mitral Regurgitation with Edwards PASCAL Transcatheter Valve Repair System) European post-market clinical follow-up study. Methods: Patients with symptomatic, clinically significant MR were prospectively enrolled. The primary safety endpoint was clinical events committee–adjudicated 30-day composite major adverse event rate and the primary effectiveness endpoint was echocardiographic core laboratory–assessed MR severity at discharge compared with baseline. Clinical, echocardiographic, functional, and quality-of-life outcomes were assessed at 1 year. Results: A total of 544 patients were enrolled (59% functional MR, 30% degenerative MR). The 30-day composite major adverse event rate was 6.8%. MR reduction was significant from baseline to discharge and sustained at 1 year with 98% of patients achieving MR ≤2+ and 82.6% MR ≤1+ (all P &lt; 0.001 vs baseline). One-year Kaplan-Meier estimate for survival was 87.3%, and freedom from heart failure hospitalization was 84.3%. Significant functional and quality-of-life improvements were observed at 1 year, including 71.6% in NYHA functional class I/II, 14.4-point increase in Kansas City Cardiomyopathy Questionnaire score, and 24.2-m improvement in 6-minute walk distance (all P &lt; 0.001 vs baseline). Conclusions: One-year outcomes of this large cohort from the MiCLASP study demonstrate continued safety and effectiveness of M-TEER with the PASCAL system in a post-market setting. Results demonstrate high survival and freedom from heart failure hospitalization, significant and sustained MR reduction, and improvements in symptoms, functional capacity, and quality of life.</p

    MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy

    Get PDF
    Abstract Despite possessing limited protein-coding potential, long non-coding RNAs (lncRNAs) have been implicated in a myriad of pathologic conditions. Most well documented in cancer, one prominent intergenic lncRNA known as MALAT1 is notorious for its role in impacting epigenetic mechanisms. In this study, we established a novel epigenetic paradigm for MALAT in diabetic retinopathy (DR) by employing siRNA-mediated MALAT1 knockdown in human retinal endothelial cells (HRECs), a Malat1 knockout animal model, vitreous humor from diabetic patients, pharmacological inhibitors for histone and DNA methylation, RNA immunoprecipitation, western blotting, and a unique DNA methylation array to determine glucose-related alterations in MALAT1. Our findings indicated that MALAT1 is capable of impacting the expressions of inflammatory transcripts through its association with components of the PRC2 complex in diabetes. Furthermore, the vitreous humors from diabetic patients revealed increased expressions of MALAT1, TNF-α, and IL-6. Intriguingly, our DNA methylation array demonstrated that transient high glucose exposure in HRECs does not contribute to significant methylation alterations at CpG sites across the MALAT1 gene. However, global inhibition of DNA methyltransferases induced significant increases in MALAT1 and associated inflammatory transcripts in HRECs. Our findings collectively demonstrate the importance of MALAT1 in inflammation and epigenetic regulation in DR
    corecore