2,418 research outputs found

    End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification

    Full text link
    As shown in computer vision, the power of deep learning lies in automatically learning relevant and powerful features for any perdition task, which is made possible through end-to-end architectures. However, deep learning approaches applied for classifying medical images do not adhere to this architecture as they rely on several pre- and post-processing steps. This shortcoming can be explained by the relatively small number of available labeled subjects, the high dimensionality of neuroimaging data, and difficulties in interpreting the results of deep learning methods. In this paper, we propose a simple 3D Convolutional Neural Networks and exploit its model parameters to tailor the end-to-end architecture for the diagnosis of Alzheimer's disease (AD). Our model can diagnose AD with an accuracy of 94.1\% on the popular ADNI dataset using only MRI data, which outperforms the previous state-of-the-art. Based on the learned model, we identify the disease biomarkers, the results of which were in accordance with the literature. We further transfer the learned model to diagnose mild cognitive impairment (MCI), the prodromal stage of AD, which yield better results compared to other methods

    SYM, Chern-Simons, Wess-Zumino Couplings and their higher derivative corrections in IIA Superstring theory

    Get PDF
    We find the entire form of the amplitude of two fermion strings (with different chirality), a massless scalar field and one closed string Ramond-Ramond (RR) in IIA superstring theory which is different from its IIB one. We make use of a very particular gauge fixing and explore several new couplings in IIA. All infinite uu- channel scalar poles and t,st,s- channel fermion poles are also constructed. We find new form of higher derivative corrections to two fermion two scalar couplings and show that the first simple (s+t+u)(s+t+u)- channel scalar pole for p+2=np+2=n case can be obtained by having new higher derivative corrections to SYM couplings at third order of α\alpha'. We find that the general structure and the coefficients of higher derivative corrections to two fermion two scalar couplings are completely different from the derived α\alpha' higher derivative corrections of type IIB.Comment: 29 pages, no figure,Latex file,published version in EPJ

    Quantum quenches in disordered systems: Approach to thermal equilibrium without a typical relaxation time

    Get PDF
    We study spectral properties and the dynamics after a quench of one-dimensional spinless fermions with short-range interactions and long-range random hopping. We show that a sufficiently fast decay of the hopping term promotes localization effects at finite temperature, which prevents thermalization even if the classical motion is chaotic. For slower decays, we find that thermalization does occur. However, within this model, the latter regime falls in an unexpected universality class, namely, observables exhibit a power-law (as opposed to an exponential) approach to their thermal expectation values.Comment: 5 pages, 5 figure

    Smart PV Inverter Control for Distribution Systems

    Get PDF
    PV solar systems employ inverters to transform dc power from solar panels into ac power for injecting into the power grids. Inverters that perform multiple functions in addition to real power production are known as “smart inverters”. This thesis presents a novel control of PV inverter as a dynamic reactive power compensator – STATCOM. This “smart PV inverter” control enables a PV solar inverter to operate in three modes – i) Full PV, ii) Partial STATCOM, and iii) Full STATCOM, depending upon system needs. The novel control is developed and demonstrated for the objectives of a) symmetrical voltage regulation, b) temporary overvoltage reduction, c) power factor correction, and d) reactive power control. In Full PV mode, the inverter performs only real power production based on solar radiation. In Partial STATCOM mode, the controller uses the remaining capacity of the inverter for voltage control, power factor correction and reactive power control. The Full STATCOM mode is invoked in emergency scenarios, such as faults, or severe voltage fluctuations. In this mode, the real power production is shut down temporarily and the entire inverter capacity is utilized for voltage regulation or TOV curtailment for providing critical support to the power system. This thesis presents a comprehensive design of the proposed smart inverter controller with all its associated system components. The performance of the smart inverter is simulated using the electromagnetic transients software PSCAD/EMTDC. It is further validated through Real Time Digital Simulation and Control Hardware in the Loop (CHIL) simulation. Finally the successful performance of the smart inverter controller is demonstrated on a 10 kW inverter in the laboratory on a simulated feeder of Bluewater Power, Sarnia, where this smart inverter is proposed to be installed. The smart PV inverter control is further shown to enhance the connectivity of PV solar farms in a realistic 44 kV Hydro One distribution feeder. It is demonstrated that if such a novel control is implemented on a 10 MW solar farm, the need for the actually installed STATCOM for voltage regulation and TOV control can be either minimized or altogether eliminated, bringing a significant savings for the utility PV solar systems employ inverters to transform dc power from solar panels into ac power for injecting into the power grids. Inverters that perform multiple functions in addition to real power production are known as “smart inverters”. This thesis presents a novel control of PV inverter as a dynamic reactive power compensator – STATCOM. This “smart PV inverter” control enables a PV solar inverter to operate in three modes – i) Full PV, ii) Partial STATCOM, and iii) Full STATCOM, depending upon system needs. The novel control is developed and demonstrated for the objectives of a) symmetrical voltage regulation, b) temporary overvoltage reduction, c) power factor correction, and d) reactive power control. In Full PV mode, the inverter performs only real power production based on solar radiation. In Partial STATCOM mode, the controller uses the remaining capacity of the inverter for voltage control, power factor correction and reactive power control. The Full STATCOM mode is invoked in emergency scenarios, such as faults, or severe voltage fluctuations. In this mode, the real power production is shut down temporarily and the entire inverter capacity is utilized for voltage regulation or TOV curtailment for providing critical support to the power system. This thesis presents a comprehensive design of the proposed smart inverter controller with all its associated system components. The performance of the smart inverter is simulated using the electromagnetic transients software PSCAD/EMTDC. It is further validated through Real Time Digital Simulation and Control Hardware in the Loop (CHIL) simulation. Finally the successful performance of the smart inverter controller is demonstrated on a 10 kW inverter in the laboratory on a simulated feeder of Bluewater Power, Sarnia, where this smart inverter is proposed to be installed. The smart PV inverter control is further shown to enhance the connectivity of PV solar farms in a realistic 44 kV Hydro One distribution feeder. It is demonstrated that if such a novel control is implemented on a 10 MW solar farm, the need for the actually installed STATCOM for voltage regulation and TOV control can be either minimized or altogether eliminated, bringing a significant savings for the utilit
    corecore