85 research outputs found

    Determining the Predominant Lesion in Patients With Severe Aortic Stenosis and Coronary Stenoses: A Multicenter Study Using Intracoronary Pressure and Flow

    Get PDF
    Background: Patients with severe aortic stenosis (AS) often have coronary artery disease. Both the aortic valve and the coronary disease influence the blood flow to the myocardium and its ability to respond to stress; leading to exertional symptoms. In this study, we aim to quantify the effect of severe AS on the coronary microcirculation and determine if this is influenced by any concomitant coronary disease. We then compare this to the effect of coronary stenoses on the coronary microcirculation. Methods: Group 1: 55 patients with severe AS and intermediate coronary stenoses treated with transcatheter aortic valve implantation (TAVI) were included. Group 2: 85 patients with intermediate coronary stenoses and no AS treated with percutaneous coronary intervention were included. Coronary pressure and flow were measured at rest and during hyperemia in both groups, before and after TAVI (group 1) and before and after percutaneous coronary intervention (group 2). Results: Microvascular resistance over the wave-free period of diastole increased significantly post-TAVI (pre-TAVI, 2.71±1.4 mm Hg·cm·s−1 versus post-TAVI 3.04±1.6 mm Hg·cm·s−1 [P=0.03]). Microvascular reserve over the wave-free period of diastole significantly improved post-TAVI (pre-TAVI 1.88±1.0 versus post-TAVI 2.09±0.8 [P=0.003]); this was independent of the severity of the underlying coronary stenosis. The change in microvascular resistance post-TAVI was equivalent to that produced by stenting a coronary lesion with an instantaneous wave-free ratio of ≤0.74. Conclusions: TAVI improves microcirculatory function regardless of the severity of underlying coronary disease. TAVI for severe AS produces a coronary hemodynamic improvement equivalent to the hemodynamic benefit of stenting coronary stenoses with instantaneous wave-free ratio values <0.74. Future trials of physiology-guided revascularization in severe AS may consider using this value to guide treatment of concomitant coronary artery disease

    Fractional Flow Reserve/ Instantaneous Wave-Free Ratio Discordance in Angiographically Intermediate Coronary Stenoses: An Analysis Using Doppler-Derived Coronary Flow Measurements

    Get PDF
    OBJECTIVES The study sought to determine the coronary flow characteristics of angiographically intermediate stenoses classified as discordant by fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR). BACKGROUND Discordance between FFR and iFR occurs in up to 20% of cases. No comparisons have been reported between the coronary flow characteristics of FFR/iFR discordant and angiographically unobstructed vessels. METHODS Baseline and hyperemic coronary flow velocity and coronary flow reserve (CFR) were compared across 5 vessel groups: FFRþ/iFRþ (108 vessels, n 1�4 91), FFR–/iFRþ (28 vessels, n 1�4 24), FFRþ/iFR– (22 vessels, n 1�4 22), FFR–/iFR– (208 vessels, n 1�4 154), and an unobstructed vessel group (201 vessels, n 1�4 153), in a post hoc analysis of the largest combined pressure and Doppler flow velocity registry (IDEAL [Iberian-Dutch-English] collaborators study). RESULTS FFRdisagreedwithiFRin14%(50of366).Baselineflowvelocitywassimilaracrossall5vesselgroups,includingthe unobstructed vessel group (p 1�4 0.34 for variance). In FFRþ/iFR– discordants, hyperemic flow velocity and CFR were similar to both FFR–/iFR– and unobstructed groups; 37.6 (interquartile range [IQR]: 26.1 to 50.4) cm/s vs. 40.0 [IQR: 29.7 to 52.3] cm/s and 42.2 [IQR: 33.8 to 53.2] cm/s and CFR 2.36 [IQR: 1.93 to 2.81] vs. 2.41 [IQR: 1.84 to 2.94] and 2.50 [IQR: 2.11 to 3.17], respectively (p > 0.05 for all). In FFR–/iFRþ discordants, hyperemic flow velocity, and CFR were similar to the FFRþ/iFRþ group; 28.2 (IQR: 20.5 to 39.7) cm/s versus 23.5 (IQR: 16.4 to 34.9) cm/s and CFR 1.44 (IQR: 1.29 to 1.85) versus 1.39 (IQR: 1.06 to 1.88), respectively (p > 0.05 for all). CONCLUSIONS FFR/iFR disagreement was explained by differences in hyperemic coronary flow velocity. Furthermore, coronary stenoses classified as FFRþ/iFR– demonstrated similar coronary flow characteristics to angiographically unobstructed vessels

    Change in Coronary Blood Flow After Percutaneous Coronary Intervention in Relation to Baseline Lesion Physiology Results of the JUSTIFY-PCI Study

    Get PDF
    Background—Percutaneous coronary intervention (PCI) aims to increase coronary blood flow by relieving epicardial obstruction. However, no study has objectively confirmed this and assessed changes in flow over different phases of the cardiac cycle. We quantified the change in resting and hyperemic flow velocity after PCI in stenoses defined physiologically by fractional flow reserve and other parameters. / Methods and Results—Seventy-five stenoses (67 patients) underwent paired flow velocity assessment before and after PCI. Flow velocity was measured over the whole cardiac cycle and the wave-free period. Mean fractional flow reserve was 0.68±0.02. Pre-PCI, hyperemic flow velocity is diminished in stenoses classed as physiologically significant compared with those classed nonsignificant (P0.80 had a significantly smaller gain (Δ4.6±2.3 cm/s; P<0.001). The change in pressure-only physiological indices demonstrated a curvilinear relationship to the change in hyperemic flow velocity but was flat for resting flow velocity. / Conclusions—Pre-PCI physiology is strongly associated with post-PCI increase in hyperemic coronary flow velocity. Hyperemic flow velocity increases 6-fold more when stenoses classed as physiologically significant undergo PCI than when nonsignificant stenoses are treated. Resting flow velocity measured over the wave-free period changes at least 4-fold less than hyperemic flow velocity after PCI

    Invasive Assessment of the Coronary Microvasculature

    No full text

    Facing the complexity of ischaemic heart disease with intracoronary pressure and flow measurements: beyond fractional flow reserve interrogation of the coronary circulation

    No full text
    Purpose of review The purpose of this study is to summarize cumulative evidence suggesting that the combination of fractional flow reserve (FFR), coronary flow reserve (CFR) and the index of microcirculatory resistance (IMR) might provide a more comprehensive invasive assessment of ischaemic heart disease (IHD). Recent findings Myocardial flow impairment in IHD results from both obstructive and nonobstructive causes. However, its diagnosis is primarily stenosis-centred. Although FFR provides valuable information on obstructive disease, its theoretical framework largely neglects the importance of nonobstructive concomitant involvement. Substantial evidence suggests, however, that nonobstructive IHD has important prognostic implications, and CFR and IMR are readily available tools for its concomitant diagnosis. Furthermore, CFR and IMR have independently been shown to improve IHD risk stratification. Further studies should address whether this more comprehensive IHD diagnosis, derived from the combination of FFR, CFR and IMR, may improve prognostic risk stratification and guide therapeutic strategies aiming for both obstructive and nonobstructive IHD involvement. Summary FFR, CFR and IMR have independently been shown to improve IHD risk stratification. Their combined use is feasible and appealing, and might lead to a more comprehensive invasive assessment of IHD
    corecore