50 research outputs found

    Stereocontrolled enantioselective total synthesis of the [2+2] quadrigemine alkaloids.

    Get PDF
    A unified strategy for enantioselective total synthesis of all stereoisomers of the 2+2 family of quadrigemine alkaloids is reported. In this approach, two enantioselective intramolecular Heck reactions are carried out at the same time on precursors fashioned in four steps from either meso- or (+)-chimonanthine to form the two critical quaternary carbons of the peripheral cyclotryptamine rings of these products. Useful levels of catalyst control are realized in either desymmetrizing a meso precursor or controlling diastereoselectivity in elaborating C2-symmetic intermediates. None of the synthetic quadrigemines are identical with alkaloids isolated previously and referred to as quadrigemines A and E. In addition, we report improvements in our previous total syntheses of (+)- or (-)-quadrigemine C that shortened the synthetic sequence to 10 steps and provided these products in 2.2% overall yield from tryptamine

    Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold

    Get PDF

    Asymmetric catalysis in complex target synthesis

    No full text
    This article describes three distinct strategies by which stereochemically complex molecules are synthesized and the ways asymmetric catalysis can impact on all three. The development of general methods to prepare synthetically useful building blocks leads to an expanded “chiral pool” of potential starting materials for asymmetric synthesis. The possibility of discovering new reactions to access new types of building blocks is particularly attractive and serves to help define the frontiers of the field. Asymmetric catalysis can also be applied to diastereoselective synthesis such that the stereochemistry of the catalyst, and not that of the substrate, determines the relative configuration of the product. Finally, in reactions where multiple stereocenters are generated simultaneously or in tandem, catalyst and substrate control can operate in a complementary manner to achieve one of many possible stereochemical outcomes selectively
    corecore