33 research outputs found

    Acoustic power delivery to pipeline monitoring wireless sensors

    Get PDF
    The use of energy harvesting for powering wireless sensors is made more challenging in most applications by the requirement for customi zation to each specific application environment because of specificities of the availab le energy form, such as precise location, direction and motion frequency, as well a s the temporal variation and unpredictability of the energy source. Wireless pow er transfer from dedicated sources can overcome these difficulties, and in this work, the use of targeted ultrasonic power transfer as a possible method for remote powering o f sensor nodes is investigated. A powering system for pipeline monitoring sensors is described and studied experimentally, with a pair of identical, non6inert ial piezoelectric transducers used at the transmitter and receiver. Power transmission of 18 mW (Root6Mean6Square) through 1 m of a 118 mm diameter cast iron pipe, wi th 8 mm wall thickness is demonstrated. By analysis of the delay between tran smission and reception, including reflections from the pipeline edges, a transmission speed of 1000 m/s is observed, corresponding to the phase velocity of the L(0,1) a xial and F(1,1) radial modes of the pipe structure. A reduction of power delivery with water6filling is observed, yet over 4 mW of delivered power through a fully6filled pipe i s demonstrated. The transmitted power and voltage levels exceed the requirements fo r efficient power management, including rectification at cold6starting conditions , and for the operation of low6power sensor nodes. The proposed powering technique may a llow the implementation of energy autonomous wireless sensor systems for monit oring industrial and network pipeline infrastructure

    Micro motion amplification – A Review

    Get PDF
    Many motion-active materials have recently emerged, with new methods of integration into actuator components and systems-on-chip. Along with established microprocessors, interconnectivity capabilities and emerging powering methods, they offer a unique opportunity for the development of interactive millimeter and micrometer scale systems with combined sensing and actuating capabilities. The amplification of nanoscale material motion to a functional range is a key requirement for motion interaction and practical applications, including medical micro-robotics, micro-vehicles and micro-motion energy harvesting. Motion amplification concepts include various types of leverage, flextensional mechanisms, unimorphs, micro-walking /micro-motor systems, and structural resonance. A review of the research state-of-art and product availability shows that the available mechanisms offer a motion gain in the range of 10. The limiting factor is the aspect ratio of the moving structure that is achievable in the microscale. Flexures offer high gains because they allow the application of input displacement in the close vicinity of an effective pivotal point. They also involve simple and monolithic fabrication methods allowing combination of multiple amplification stages. Currently, commercially available motion amplifiers can provide strokes as high as 2% of their size. The combination of high-force piezoelectric stacks or unimorph beams with compliant structure optimization methods is expected to make available a new class of high-performance motion translators for microsystems

    Internet of Things for Sustainable Mining

    Get PDF
    The sustainable mining Internet of Things deals with the applications of IoT technology to the coupled needs of sustainable recovery of metals and a healthy environment for a thriving planet. In this chapter, the IoT architecture and technology is presented to support development of a digital mining platform emphasizing the exploration of rock–fluid–environment interactions to develop extraction methods with maximum economic benefit, while maintaining and preserving both water quantity and quality, soil, and, ultimately, human health. New perspectives are provided for IoT applications in developing new mineral resources, improved management of tailings, monitoring and mitigating contamination from mining. Moreover, tools to assess the environmental and social impacts of mining including the demands on dwindling freshwater resources. The cutting-edge technologies that could be leveraged to develop the state-of-the-art sustainable mining IoT paradigm are also discussed

    Opportunities for sensing systems in mining

    Get PDF
    Pervasive sensing - the capability to deploy large numbers of sensors, to link them to communication networks, and to analyze their collective data - is transforming many industries. In mining, networked sensors are already used for remote operation, automation including driverless vehicles, health and safety, and exploration. In this paper, the state-of-the-art sensing and monitoring technologies are assessed as solutions against the main challenges and opportunities in the mining industry. Localization, mapping, remote operation, maintenance and health and safety are identified as the main beneficiaries, from rapidly developing technologies such as 3D visualization, augmented reality, energy autonomous sensor nodes, distributed sensing, smart network protocols and big data analytics. It is shown that the identification and management of ore grade in particular, which transcends each stage of the mining process, may critically benefit from certain arising sensing technologies, where major efficiency improvements are possible in exploration, extraction, haulage and processing activities

    Speed vs efficiency and storage type in portable energy systems

    Get PDF
    Portable power management systems must optimise power interfacing, storage and routing, to meet application specific functionality requirements. Two key aspects are reliability and efficiency. For reliable operation, it is required that powering on/off the system must occur in a planned manner. For efficient operation, it is desired that the system is powered for an optimal amount of time. maximizing its useful operational outcome per unit of energy consumed. This can be achieved by optimizing energy usage based on the anticipated energy income and power demand of duty-cycled power consumers. Both battery and supercapacitor storage can be employed to meet energy and power density demand, on both sides, and to enable fast transition from cold-starting to active power management. A simplified model is used to calculate the reliability of a simple solar-powered microsystem. The modelling of dynamically configurable interfacing and storage may enable a new generation of power management, providing reliable power from irregular and small energy sources

    Passive acoustic transducer as a fluid flow sensor

    No full text
    Autonomy and minimal disruption are key desirable features for sensors to be deployed in medical, industrial, vehicle and infrastructure monitoring systems. Using a passive structure to transduce the quantity of interest into an acoustic or electromagnetic wave could offer an attractive solution for remote sensing, lifting the requirements of installing active materials, electronics, and power sources in remote, inaccessible, sensitive, or harsh environment locations. Here, we report a simple cavity and ball structure that transduces fluid flow through a pipe into an acoustic signal. A microphone on the outside wall of the pipe records the intensity and arrival rate of the sound pulses generated by collisions between the ball and the cavity walls. Using this approach external measurement of flow is demonstrated with adequate repeatability before any acoustic signal processing. This result is expected to open the way to the implementation of passive, remotely readable sensors for fluid flow and other fluid properties of interest

    Inductive energy harvesting from current-carrying structures

    No full text
    This article introduces an inductive method for harvesting energy from current-carrying structures. Numerical simulation of a structural beam shows that the skin effect can lead to significant current concentration at edges, providing a five-fold power benefit at such locations, even at frequencies below 1 kHz. The use of a rectangular ferrite core can provide a Ă—4 power density improvement. The adoption of funnel-like core shapes allows the reduction of core mass and coil frame size, leading to significant further power density enhancement. Magnetic field simulation and coil analysis demonstrate a power density increase of Ă—49 by ferrite funnels, in comparison to a coreless coil. Experimental results demonstrate rectified power over 1 mW delivered to a storage capacitor, from a 40 Ă— 20 Ă— 2 mm core-and-coil, in the vicinity of a spatially distributed 20 A current at 800 Hz. Rectification and impedance matching are studied experimentally using a voltage doubler circuit with input capacitor tuning to counteract the coil reactance. Experimental results from a spatially distributed 30 A current at 300 Hz and a 1:7 funnel core demonstrate power density of 36 ÎĽ W/g (103 ÎĽ W/cm 3 ), opening up the way to noninvasive inductive powering of systems in the vicinity of current-carrying structures
    corecore