176 research outputs found

    Anisotropic Atom-Surface Interactions in the Casimir-Polder Regime

    Full text link
    The distance-dependence of the anisotropic atom-wall interaction is studied. The central result is the 1/z^6 quadrupolar anisotropy decay in the retarded Casimir-Polder regime. Analysis of the transition region between non-retarded van der Waals regime (in 1/z^3) and Casimir-Polder regime shows that the anisotropy cross-over occurs at very short distances from the surface, on the order of 0.03 Lambda, where Lambda is the atom characteristic wavelength. Possible experimental verifications of this distance dependence are discussed.Comment: 5 pages, 2 figure

    Detection of Spiral photons in Quantum Optics

    Full text link
    We show that a new type of photon detector, sensitive to the gradients of electromagnetic fields, should be a useful tool to characterize the quantum properties of spatially-dependent optical fields. As a simple detector of such a kind, we propose using magnetic dipole or electric quadrupole transitions in atoms or molecules and apply it to the detection of spiral photons in Laguerre-Gauss (LG) beams. We show that LG beams are not true hollow beams, due to the presence of magnetic fields and gradients of electric fields on beam axis. This approach paves the way to an analysis at the quantum level of the spatial structure and angular momentum properties of singular light beams.Comment: 5 pages, 4 figure

    Negative-index media for matter-wave optics

    Full text link
    We consider the extension of optical meta-materials to matter waves. We show that the generic property of pulsed comoving magnetic fields allows us to fashion the wave-number dependence of the atomic phase shift. It can be used to produce a transient negative group velocity of an atomic wave packet, which results into a negative refraction of the matter wave. Application to slow metastable argon atoms Ar*(3P2) shows that the device is able to operate either as an efficient beam splitter or an atomic meta-lens. Implications of "meta-media" in atom optics are considered.Comment: 4 pages, 4 figures, submitted at PRL 4 November 200

    Coherent flash of light emitted by a cold atomic cloud

    Get PDF
    When a resonant laser sent on an optically thick cold atomic cloud is abruptly switched off, a coherent flash of light is emitted in the forward direction. This transient phenomenon is observed due to the highly resonant character of the atomic scatterers. We analyze quantitatively its spatio-temporal properties and show very good agreement with theoretical predictions. Based on complementary experiments, the phase of the coherent field is reconstructed without interferometric tools.Comment: Submitted to Phys. Rev. Let

    Selective Reflection Spectroscopy at the Interface between a Calcium Fluoride Window and Cs Vapour

    Full text link
    A special vapour cell has been built, that allows the measurement of the atom-surface van der Waals interaction exerted by a CaF2 window at the interface with Cs vapour. Mechanical and thermal fragility of fluoride windows make common designs of vapour cells unpractical, so that we have developed an all-sapphire sealed cell with an internal CaF2 window. Although impurities were accidentally introduced when filling-up the prototype cell, leading to a line-broadening and shift, the selective reflection spectrum on the Cs D1 line (894 nm) makes apparent the weak van der Waals surface interaction. The uncertainties introduced by the effects of these impurities in the van der Waals measurement are nearly eliminated when comparing the selective reflection signal at the CaF2 interface of interest, and at a sapphire window of the same cell. The ratio of the interaction respectively exerted by a sapphire interface and a CaF2 interface is found to be 0.55 ±\pm 0.25, in good agreement with the theoretical evaluation of ~0.67.Comment: soumis \`a Appl Phys B MS 4734

    Selective Reflection Spectroscopy on the UV Third Resonance Line of Cs : Simultaneous Probing of a van der Waals Atom-Surface Interaction Sensitive to Far IR Couplings and of Interatomic Collisions

    Get PDF
    We report on the analysis of FM selective reflection experiments on the 6S1/2->8P3/2 transition of Cs at 388 nm, and on the measurement of the surface van der Waals interaction exerted by a sapphire interface on Cs(8P3/2). Various improvements in the systematic fitting of the experiments have permitted to supersede the major difficulty of a severe overlap of the hyperfine components, originating on the one hand in a relatively small natural structure, and on the other hand on a large pressure broadening imposed by the high atomic density needed for the observation of selective reflection on a weak transition. The strength of the van der Waals surface interaction is evaluated to be 73±\pm10 kHz.μ\mum3. An evaluation of the pressure shift of the transition is also provided as a by-product of the measurement. We finally discuss the significance of an apparent disagreement between the experimental measurement of the surface interaction, and the theoretical value calculated for an electromagnetic vacuum at a null temperature. The possible influence of the thermal excitation of the surface is evoked, because, the dominant contributions to the vW interaction for Cs(8P3/2) lie in the far infrared range.Comment: submitted to Laser Physics - issue in the memory of Herbert Walther

    Quadrupole transitions near interface: general theory and application to atom inside a planar cavity

    Full text link
    Quadrupole radiation of an atom in an arbitrary environment is investigated within classical as well as quantum electrodynamical approaches. Analytical expressions for decay rates are obtained in terms of Green function of Maxwell equations. The equivalence of both approaches is shown. General expressions are applied to analyze the quadrupole decay rate of an atom placed between two half spaces with arbitrary dielectric constant. It is shown that in the case when the atom is close to the surface, the total decay rate is inversely proportional to the fifth power of distance between an atom and a plane interface.Comment: 18 pages, 7 figure

    Dynamics of evanescent matter waves in negative-index media

    No full text
    International audiencenumbers: 03.75.-b Matter Waves 03.75.Be Atom and Neutron Optics 37.10.Gh Atom Traps and Guides 42.25.-p Wave Optics ABSTRACT Semi-evanescent and evanescent matter-waves produced by an atom wave packet impinging a repulsive barrier can be back-refracted and reconstructed by the application of negative-index " comoving " potential pulses. One shows that those collapses and revivals generate a matter wave confined on both sides of the barrier border (" surface matter wave ") and should be observable via the retardation of atom reflection from the barrier interface. This property, joined to the possibility recently demonstrated of inducing negative refraction of atom waves, makes such potentials a matter-wave counterpart of negative-index materials or " meta materials " well-known in light optics
    • …
    corecore