231 research outputs found

    Characterizing Triviality of the Exponent Lattice of A Polynomial through Galois and Galois-Like Groups

    Full text link
    The problem of computing \emph{the exponent lattice} which consists of all the multiplicative relations between the roots of a univariate polynomial has drawn much attention in the field of computer algebra. As is known, almost all irreducible polynomials with integer coefficients have only trivial exponent lattices. However, the algorithms in the literature have difficulty in proving such triviality for a generic polynomial. In this paper, the relations between the Galois group (respectively, \emph{the Galois-like groups}) and the triviality of the exponent lattice of a polynomial are investigated. The \bbbq\emph{-trivial} pairs, which are at the heart of the relations between the Galois group and the triviality of the exponent lattice of a polynomial, are characterized. An effective algorithm is developed to recognize these pairs. Based on this, a new algorithm is designed to prove the triviality of the exponent lattice of a generic irreducible polynomial, which considerably improves a state-of-the-art algorithm of the same type when the polynomial degree becomes larger. In addition, the concept of the Galois-like groups of a polynomial is introduced. Some properties of the Galois-like groups are proved and, more importantly, a sufficient and necessary condition is given for a polynomial (which is not necessarily irreducible) to have trivial exponent lattice.Comment: 19 pages,2 figure

    Cutting edges at random in large recursive trees

    Get PDF
    We comment on old and new results related to the destruction of a random recursive tree (RRT), in which its edges are cut one after the other in a uniform random order. In particular, we study the number of steps needed to isolate or disconnect certain distinguished vertices when the size of the tree tends to infinity. New probabilistic explanations are given in terms of the so-called cut-tree and the tree of component sizes, which both encode different aspects of the destruction process. Finally, we establish the connection to Bernoulli bond percolation on large RRT's and present recent results on the cluster sizes in the supercritical regime.Comment: 29 pages, 3 figure

    Patterns in rational base number systems

    Full text link
    Number systems with a rational number a/b>1a/b > 1 as base have gained interest in recent years. In particular, relations to Mahler's 3/2-problem as well as the Josephus problem have been established. In the present paper we show that the patterns of digits in the representations of positive integers in such a number system are uniformly distributed. We study the sum-of-digits function of number systems with rational base a/ba/b and use representations w.r.t. this base to construct normal numbers in base aa in the spirit of Champernowne. The main challenge in our proofs comes from the fact that the language of the representations of integers in these number systems is not context-free. The intricacy of this language makes it impossible to prove our results along classical lines. In particular, we use self-affine tiles that are defined in certain subrings of the ad\'ele ring AQ\mathbb{A}_\mathbb{Q} and Fourier analysis in AQ\mathbb{A}_\mathbb{Q}. With help of these tools we are able to reformulate our results as estimation problems for character sums

    High-rate, high-fidelity entanglement of qubits across an elementary quantum network

    Full text link
    We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two 88{}^{88}Sr+{}^{+} qubits are entangled via the polarization degree of freedom of two photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beamsplitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate remote Bell pairs with fidelity F=0.940(5)F=0.940(5) at an average rate 182s1182\,\mathrm{s}^{-1} (success probability 2.18×1042.18\times10^{-4}).Comment: v2 updated to include responses to reviewers, as published in PR

    The power of choice in network growth

    Full text link
    The "power of choice" has been shown to radically alter the behavior of a number of randomized algorithms. Here we explore the effects of choice on models of tree and network growth. In our models each new node has k randomly chosen contacts, where k > 1 is a constant. It then attaches to whichever one of these contacts is most desirable in some sense, such as its distance from the root or its degree. Even when the new node has just two choices, i.e., when k=2, the resulting network can be very different from a random graph or tree. For instance, if the new node attaches to the contact which is closest to the root of the tree, the distribution of depths changes from Poisson to a traveling wave solution. If the new node attaches to the contact with the smallest degree, the degree distribution is closer to uniform than in a random graph, so that with high probability there are no nodes in the network with degree greater than O(log log N). Finally, if the new node attaches to the contact with the largest degree, we find that the degree distribution is a power law with exponent -1 up to degrees roughly equal to k, with an exponential cutoff beyond that; thus, in this case, we need k >> 1 to see a power law over a wide range of degrees.Comment: 9 pages, 4 figure

    The grand canonical ABC model: a reflection asymmetric mean field Potts model

    Full text link
    We investigate the phase diagram of a three-component system of particles on a one-dimensional filled lattice, or equivalently of a one-dimensional three-state Potts model, with reflection asymmetric mean field interactions. The three types of particles are designated as AA, BB, and CC. The system is described by a grand canonical ensemble with temperature TT and chemical potentials TλAT\lambda_A, TλBT\lambda_B, and TλCT\lambda_C. We find that for λA=λB=λC\lambda_A=\lambda_B=\lambda_C the system undergoes a phase transition from a uniform density to a continuum of phases at a critical temperature T^c=(2π/3)1\hat T_c=(2\pi/\sqrt3)^{-1}. For other values of the chemical potentials the system has a unique equilibrium state. As is the case for the canonical ensemble for this ABCABC model, the grand canonical ensemble is the stationary measure satisfying detailed balance for a natural dynamics. We note that T^c=3Tc\hat T_c=3T_c, where TcT_c is the critical temperature for a similar transition in the canonical ensemble at fixed equal densities rA=rB=rC=1/3r_A=r_B=r_C=1/3.Comment: 24 pages, 3 figure

    Understanding Search Trees via Statistical Physics

    Full text link
    We study the random m-ary search tree model (where m stands for the number of branches of a search tree), an important problem for data storage in computer science, using a variety of statistical physics techniques that allow us to obtain exact asymptotic results. In particular, we show that the probability distributions of extreme observables associated with a random search tree such as the height and the balanced height of a tree have a traveling front structure. In addition, the variance of the number of nodes needed to store a data string of a given size N is shown to undergo a striking phase transition at a critical value of the branching ratio m_c=26. We identify the mechanism of this phase transition, show that it is generic and occurs in various other problems as well. New results are obtained when each element of the data string is a D-dimensional vector. We show that this problem also has a phase transition at a critical dimension, D_c= \pi/\sin^{-1}(1/\sqrt{8})=8.69363...Comment: 11 pages, 8 .eps figures included. Invited contribution to STATPHYS-22 held at Bangalore (India) in July 2004. To appear in the proceedings of STATPHYS-2

    The Supremum Norm of the Discrepancy Function: Recent Results and Connections

    Full text link
    A great challenge in the analysis of the discrepancy function D_N is to obtain universal lower bounds on the L-infty norm of D_N in dimensions d \geq 3. It follows from the average case bound of Klaus Roth that the L-infty norm of D_N is at least (log N) ^{(d-1)/2}. It is conjectured that the L-infty bound is significantly larger, but the only definitive result is that of Wolfgang Schmidt in dimension d=2. Partial improvements of the Roth exponent (d-1)/2 in higher dimensions have been established by the authors and Armen Vagharshakyan. We survey these results, the underlying methods, and some of their connections to other subjects in probability, approximation theory, and analysis.Comment: 15 pages, 3 Figures. Reports on talks presented by the authors at the 10th international conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Sydney Australia, February 2011. v2: Comments of the referee are incorporate

    Hall Normalization Constants for the Bures Volumes of the n-State Quantum Systems

    Full text link
    We report the results of certain integrations of quantum-theoretic interest, relying, in this regard, upon recently developed parameterizations of Boya et al of the n x n density matrices, in terms of squared components of the unit (n-1)-sphere and the n x n unitary matrices. Firstly, we express the normalized volume elements of the Bures (minimal monotone) metric for n = 2 and 3, obtaining thereby "Bures prior probability distributions" over the two- and three-state systems. Then, as an essential first step in extending these results to n > 3, we determine that the "Hall normalization constant" (C_{n}) for the marginal Bures prior probability distribution over the (n-1)-dimensional simplex of the n eigenvalues of the n x n density matrices is, for n = 4, equal to 71680/pi^2. Since we also find that C_{3} = 35/pi, it follows that C_{4} is simply equal to 2^{11} C_{3}/pi. (C_{2} itself is known to equal 2/pi.) The constant C_{5} is also found. It too is associated with a remarkably simple decompositon, involving the product of the eight consecutive prime numbers from 2 to 23. We also preliminarily investigate several cases, n > 5, with the use of quasi-Monte Carlo integration. We hope that the various analyses reported will prove useful in deriving a general formula (which evidence suggests will involve the Bernoulli numbers) for the Hall normalization constant for arbitrary n. This would have diverse applications, including quantum inference and universal quantum coding.Comment: 14 pages, LaTeX, 6 postscript figures. Revised version to appear in J. Phys. A. We make a few slight changes from the previous version, but also add a subsection (III G) in which several variations of the basic problem are newly studied. Rather strong evidence is adduced that the Hall constants are related to partial sums of denominators of the even-indexed Bernoulli numbers, although a general formula is still lackin

    Long and short paths in uniform random recursive dags

    Full text link
    In a uniform random recursive k-dag, there is a root, 0, and each node in turn, from 1 to n, chooses k uniform random parents from among the nodes of smaller index. If S_n is the shortest path distance from node n to the root, then we determine the constant \sigma such that S_n/log(n) tends to \sigma in probability as n tends to infinity. We also show that max_{1 \le i \le n} S_i/log(n) tends to \sigma in probability.Comment: 16 page
    corecore