52 research outputs found

    Biochemical Content of Cambium of Abies nephrolepis

    Get PDF
    The peculiarity of bears behavior of stripping of bark is typical for all species. We have described the damage to trees, by Asiatic black bear (Ursus thibetanus) and brown bear (U. arctos) in Primorsky Krai and by brown bears on the Sakhalin Island during 1998–2015. In this study, we studied the damaged bark of the tree only in cases where it was clear that part of the cambium was eaten by bears. Cambium of species Abies nephrolepis is the most preferred for bear consumption in Primorsky Krai. We distinguished very large seasonal fluctuations in the amount of its consumption. The greatest interest of bears in this kind of food is in the summer time. We have analyzed the composition of the cambium of A. nephrolepis. These results suggest that the important purpose of the use of this kind of food is to restore and maintain the normal functioning of the intestines

    Identification of Antibody-Mediated Hydrolysis Sites of Oligopeptides Corresponding to the SARS-CoV-2 S-Protein by MALDI-TOF Mass Spectrometry

    No full text
    Antibodies recognizing RBD and the S-protein have been previously demonstrated to be formed in humans after SARS-CoV-2 infection and vaccination with the Sputnik V adenovirus vaccine. These antibodies were found to be active when hydrolyzing FITC-labeled oligopeptides corresponding to linear epitopes of the S-protein. The thin-layer chromatography method allows the relative accumulation of the reaction product to be estimated but cannot identify hydrolysis sites. This study used the MALDI-TOF MS method to establish oligopeptide hydrolysis sites. Using the MALDI-TOF MS method in combination with the analysis of known hydrolysis sites characteristic of canonical proteases allowed us to establish the unique hydrolysis sites inherent only to catalytically active antibodies. We have discovered two 12-mer oligopeptides to have six hydrolysis sites equally distributed throughout the oligopeptide. The other three oligopeptides were found to have two to three closely spaced hydrolysis sites. In contrast to trypsin and chymotrypsin proteases, the catalytically active antibodies of COVID-19 patients have their peptide bond hydrolyzed mainly after proline, threonine, glycine, or serine residues. Here, we propose a new high-throughput experimental method for analyzing the proteolytic activity of natural antibodies produced in viral pathology

    Comparison of the Content of Several Elements in Seawater, Sea Cucumber Eupentacta fraudatrix and Its High-Molecular-Mass Multiprotein Complex

    No full text
    Metal ions and other elements play many different critical roles in all biological processes. They can be especially important in high concentrations for the functioning of organisms living in seawater. It is important to understand how much the concentrations of different trace elements in such organisms can be higher than in seawater. Some marine organisms capable of rapid recovery after different injuries are fascinating in this regard. Sea cucumbers Eupentacta fraudatrix can completely restore all organs and the whole body within several weeks after their division into two parts. Here, for the first time, a comparison of the content of different elements in seawater, sea cucumber, and its very stable multiprotein complex (2000 kDa) was performed using two-jet plasma atomic emission spectrometry. Among the 18 elements we found in sea cucumbers, seawater contained only six elements in detectable amounts, and their content decreased in the following order: Mg > Ca > B > Sr ≈ Si > Cr (0.13–930 µg/g of seawater). The content of these elements in sea cucumbers was higher compared with seawater (-fold): Ca (714) > Sr (459) > Cr (75) > Si (42)> B (12) > Mg (6.9). Only four of them had a higher concentration in the protein complex than in seawater (-fold): Si (120.0) > Cr (31.5) > Ca (9.1) > Sr (8.8). The contents of Mg and B were lower in the protein complex than in seawater. The content of elements additionally found in sea cucumbers decreased in the order (µg/g of powder) of P (1100) > Fe (47) > Mn (26) > Ba (15) > Zn (13) > Al (9.3) > Mo (2.8) > Cu (1.4) > Cd (0.3), and in the protein complex, in the order of P (290) > Zn (51) > Fe (23) > Al (14) ≈ Ni (13) > Cu (7.5) > Ba (2.5) ≈ Co (2.0) ≈ Mn (1.6) > Cd (0.7) >Ag (0.2). Thus, sea cucumbers accumulate various elements, including those contained in very low concentrations in seawater. The possible biological roles of these elements are discussed here

    Very Stable Two Mega Dalton High-Molecular-Mass Multiprotein Complex from Sea Cucumber Eupentacta fraudatrix

    No full text
    In contrast to many human organs, only the human liver can self-regenerate, to some degree. Some marine echinoderms are convenient objects for studying the processes of regenerations of organs and tissues. For example, sea cucumbers Eupentacta fraudatrix can completely restore within several weeks, the internal organs and the whole body after their division into two or three parts. Therefore, these cucumbers are a very convenient model for studying the general mechanisms of regeneration. However, there is no literature data yet on which biomolecules of these cucumbers can stimulate the regeneration of organs and the whole-body processes. Studying the mechanisms of restoration is very important for modern biology and medicine, since it can help researchers to understand which proteins, enzymes, hormones, or possible complexes can play an essential role in regeneration. This work is the first to analyze the possible content of very stable protein complexes in sea cucumbers Eupentacta fraudatrix. It has been shown that their organisms contain a very stable multiprotein complex of about 2000 kDa. This complex contains 15 proteins with molecular masses (MMs) >10 kDa and 21 small proteins and peptides with MMs 2.0–8.6 kDa. It is effectively destroyed only in the presence of 3.0 M MgCl2 and, to a lesser extent, 3.0 M NaCl, while the best dissociation occurs in the presence of 8.0 M urea + 0.1 M EDTA. Our data indicate that forming a very stable proteins complex occurs due to the combination of bridges formed by metal ions, electrostatic contacts, and hydrogen bonds

    Protease and DNase Activities of a Very Stable High-Molecular-Mass Multiprotein Complex from Sea Cucumber Eupentacta fraudatrix

    No full text
    Only some human organs, including the liver, are capable of very weak self-regeneration. Some marine echinoderms are very useful for studying the self-regeneration processes of organs and tissues. For example, sea cucumbers Eupentacta fraudatrix (holothurians) demonstrate complete restoration of all organs and the body within several weeks after their division into two parts. Therefore, these cucumbers are a prospective model for studying the general mechanisms of self-regeneration. However, there is no data available yet concerning biomolecules of holothurians, which can stimulate the processes of organ and whole-body regeneration. Investigation of these restoration mechanisms is very important for modern medicine and biology because it can help to understand which hormones, nucleic acids, proteins, enzymes, or complexes play an essential role in self-regeneration. It is possible that stable, polyfunctional, high-molecular-weight protein complexes play an essential role in these processes. It has recently been shown that sea cucumbers Eupentacta fraudatrix contain a very stable multiprotein complex of about 2000 kDa. The first analysis of possible enzymatic activities of a stable protein complex was carried out in this work, revealing that the complex possesses several protease and DNase activities. The complex metalloprotease is activated by several metal ions (Zn2+ > Mn2+ > Mg2+). The relative contribution of metalloproteases (~63.4%), serine-like protease (~30.5%), and thiol protease (~6.1%) to the total protease activity of the complex was estimated. Metal-independent proteases of the complex hydrolyze proteins at trypsin-specific sites (after Lys and Arg). The complex contains both metal-dependent and metal-independent DNases. Mg2+, Mn2+, and Co2+ ions were found to strongly increase the DNase activity of the complex

    Multiple sites of the cleavage of 21- and 25-mer encephalytogenic oligopeptides corresponding to human myelin basic protein (MBP) by specific anti-MBP antibodies from patients with systemic lupus erythematosus.

    Get PDF
    IgGs from patients with multiple sclerosis and systemic lupus erythematosus (SLE) purified on MBP-Sepharose in contrast to canonical proteases hydrolyze effectively only myelin basic protein (MBP), but not many other tested proteins. Here we have shown for the first time that anti-MBP SLE IgGs hydrolyze nonspecific tri- and tetrapeptides with an extreme low efficiency and cannot effectively hydrolyze longer 20-mer nonspecific oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. At the same time, anti-MBP SLE IgGs efficiently hydrolyze oligopeptides corresponding to AGDs of MBP. All sites of IgG-mediated proteolysis of 21-and 25-mer encephalytogenic oligopeptides corresponding to two known AGDs of MBP were found by a combination of reverse-phase chromatography, TLC, and MALDI spectrometry. Several clustered major, moderate, and minor sites of cleavage were revealed in the case of 21- and 25-mer oligopeptides. The active sites of anti-MBP abzymes are localised on their light chains, while heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high affinity to MBP and specificity of this protein hydrolysis. The affinity of anti-MBP abzymes for intact MBP is approximately 1000-fold higher than for the oligopeptides. The data suggest that all oligopeptides interact mainly with the light chains of different monoclonal abzymes of total pool of IgGs, which possesses a lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific than globular protein and can occur in several sites

    The data of RPhC, TLC, and MALDI analysis of molecular masses of fluorescent oligopeptides forming after incubation of X-OP21 with sle-IgG<sub>mix.</sub>

    No full text
    *<p>Free fluorescent compound; all analyzed OPs contained fluorescent X-component.</p>**<p>The same products of the hydrolysis separated by RPhC (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051600#pone-0051600-g003" target="_blank">Fig. 3A</a>) were revealed in several peaks by MALDI spectrometry; the main peaks are marked in bold, while additional peaks containing low amount of the same OPs are shown in parentheses. C1 reflects the presence of signal corresponding to the analyzed product in spectrum of total reaction mixture.</p>***<p>The same several products of the hydrolysis corresponding to each peak after RPhC (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051600#pone-0051600-g003" target="_blank">Fig. 3A</a>) were revealed not only by MALDI spectrometry, but also by TLC (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051600#pone-0051600-g003" target="_blank">Fig. 3B</a>).</p>Β§<p>The relative content of different products after incomplete hydrolysis of X-OP21 was performed taking into account the data of TLC analysis (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051600#pone-0051600-g003" target="_blank">Fig. 3B</a>); a range of the values from three repeats is given.</p
    • …
    corecore