5,330 research outputs found
Recommended from our members
Emergency Unemployment Compensation
[Excerpt] The Emergency Unemployment Compensation (EUC) program was created by P.L. 110-252. This new temporary unemployment insurance program provides up to 13 additional weeks of unemployment benefits to certain workers who have exhausted their rights to regular unemployment compensation (UC) benefits. The program effectively begins July 6, 2008, and will terminate on March 28, 2009. No EUC benefit will be paid beyond the week ending July 4, 2009. This report will be updated to reflect congressional action or programmatic changes. Individuals should contact their state’s unemployment agency to obtain information on how to apply for and receive EUC benefits. The U.S. Department of Labor maintains a website with links to each state’s agency at http://www.workforcesecurity.doleta.gov/map.asp]
Recommended from our members
Foreign Science and Engineering Presence in U.S. Institutions and the Labor Force
[Excerpt] The increased presence of foreign students in graduate science and engineering programs and in the scientific workforce has been and continues to be of concern to some in the scientific community. Enrollment of U.S. citizens in graduate science and engineering programs has not kept pace with that of foreign students in those programs. In addition to the number of foreign students in graduate science and engineering programs, a significant number of university faculty in the scientific disciplines are foreign, and foreign doctorates are employed in large numbers by industry.
Few will dispute that U.S. universities and industry have chosen foreign talent to fill many positions. Foreign scientists and engineers serve the needs of industry at the doctorate level and also have been found to serve in major roles at the masters level. However, there are charges that U.S. workers are adversely affected by the entry of foreign scientists and engineers, who reportedly accept lower wages than U.S. citizens would accept in order to enter or remain in the United States.
NSF data reveal that in 2005, the foreign student population earned approximately 34.7% of the doctorate degrees in the sciences and approximately 63.1% of the doctorate degrees in engineering. In 2005, foreign students on temporary resident visas earned 30.8% of the doctorates in the sciences, and 58.6% of the doctorates in engineering. The participation rates in 2004 were 28.5% and 57.3%, respectively. In 2005, permanent resident status students earned 3.8% of the doctorates in the sciences and 4.5% of the doctorates in engineering, slightly above the 2004 levels of 3.7% and 4.2%, respectively.
Many in the scientific community maintain that in order to compete with countries that are rapidly expanding their scientific and technological capabilities, the country needs to bring to the United States those whose skills will benefit society and will enable us to compete in the new-technology based global economy. The academic community is concerned that the more stringent visa requirements for foreign students may have a continued impact on enrollments in colleges and universities. There are those who believe that the underlying problem of foreign students in graduate science and engineering programs is not necessarily that there are too many foreign-born students, but that there are not enough native-born students pursuing scientific and technical disciplines.
Legislation has been introduced in the 110th Congress to attract foreign students in the scientific and technical disciplines. H.R. 1645, the Security Through Regularized Immigration and a Vibrant Economy Act of 2007, would provide, among other things, an expansion of the types of individuals who would no longer be subjected to the annual limits on legal immigrants. Included in this group would be those who (1) hold an advanced degree in science, mathematics, engineering, or technical fields and who have been working in the United States in a related field for three years on a nonimmigrant visa; and (2) been awarded a medical specialty certification based on post-doctoral training and experience in the United States
Recommended from our members
The Future Role of U.S. Trade Policy: An Overview
[Excerpt] The United States has become increasingly integrated with the rest of the world economy. This integration has offered benefits and presented challenges to U.S. business, agriculture, labor, and consumers. Those who can compete in the more integrated economy have enjoyed opportunities to broaden their success, while those who are challenged by increased foreign competition have been forced to adjust and some have exited the market or relocated overseas. Some observers contend that, in order to remain globally competitive, the United States must continue to support trade liberalization policies, while assisting those hurt by trade. Others have raised doubts over whether free trade policies benefit the U.S. economy (e.g., some blame such policies for the large U.S. trade deficit, declining wages, and growing income disparity). Many contend that trade liberalization works only when everyone plays by the rules and have urged the aggressive enforcement of U.S. trade laws to address unfair trade practices. Still others maintain that such issues as labor rights, the environment, and climate change should be linked to trade policies. These competing views are often reflected in the struggle between Congress and the Executive branch in shaping U.S. trade policy. This report provides an overview and background on the debate over the future course of U.S. trade policy and will be updated as events warrant
Andrew M. Mead, 2001 UMaine Commencement Address
The text of Chief Justice of the Maine Superior Court Andrew M. Mead\u27s address to graduates of the University of Maine Class of 2001 on May 19, 2001
Corrosion performance of advanced structural materials in sodium.
This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carbon particulates) in sodium that is of interest for materials compatibility evaluation. The removal of carbon from the sodium will be accomplished by exposing carbon-gettering alloys such as refractory metals that have a high partitioning coefficient for carbon and also precipitate carbides, thereby decreasing the carbon concentration in sodium
Monitoring and evaluation of human resources for health: an international perspective
BACKGROUND: Despite the undoubted importance of human resources to the functions of health systems, there is little consistency between countries in how human resource strategies are monitored and evaluated. This paper presents an integrated approach for developing an evidence base on human resources for health (HRH) to support decision-making, drawing on a framework for health systems performance assessment. METHODS: Conceptual and methodological issues for selecting indicators for HRH monitoring and evaluation are discussed, and a range of primary and secondary data sources that might be used to generate indicators are reviewed. Descriptive analyses are conducted drawing primarily on one type of source, namely routinely reported data on the numbers of health personnel and medical schools as covered by national reporting systems and compiled by the World Health Organization. Regression techniques are used to triangulate a given HRH indicator calculated from different data sources across multiple countries. RESULTS: Major variations in the supply of health personnel and training opportunities are found to occur by region. However, certain discrepancies are also observed in measuring the same indicator from different sources, possibly related to the occupational classification or to the sources' representation. CONCLUSION: Evidence-based information is needed to better understand trends in HRH. Although a range of sources exist that can potentially be used for HRH assessment, the information that can be derived from many of these individual sources precludes refined analysis. A variety of data sources and analytical approaches, each with its own strengths and limitations, is required to reflect the complexity of HRH issues. In order to enhance cross-national comparability, data collection efforts should be processed through the use of internationally standardized classifications (in particular, for occupation, industry and education) at the greatest level of detail possible
Checklists and illustrative financial statements for state and local governmental units : a financial reporting practice aid, June 1994 edition
https://egrove.olemiss.edu/aicpa_indev/1928/thumbnail.jp
Checklists and illustrative financial statements for finance companies : a financial accounting and reporting practice aid, December 1995 edition
https://egrove.olemiss.edu/aicpa_indev/2016/thumbnail.jp
Checklists and illustrative financial statements for life insurance companies : a financial accounting and reporting practice aid, December 1993 edition
https://egrove.olemiss.edu/aicpa_indev/1879/thumbnail.jp
- …