432 research outputs found

    A dynamic fluid landscape mediates the spread of bacteria

    Full text link
    Microbial interactions regulate their spread and survival in competitive environments. It is not clear if the physical parameters of the environment regulate the outcome of these interactions. In this work, we show that the opportunistic pathogen Pseudomonas aeruginosa occupies a larger area on the substratum in the presence of yeast such as Cryptococcus neoformans , than without it. At the microscopic level, bacterial cells show an enhanced activity in the vicinity of yeast cells. We observe this behaviour even when the live yeast cells are replaced with heat-killed cells or with spherical glass beads of similar morphology, which suggests that the observed behaviour is not specific to the biology of microbes. Upon careful investigation, we find that a fluid pool is formed around yeast cells which facilitates the swimming of the flagellated P. aeruginosa , causing their enhanced motility. Using mathematical modeling we demonstrate how this local enhancement of bacterial motility leads to the enhanced spread observed at the level of the plate. We find that the dynamics of the fluid landscape around the bacteria, mediated by the growing yeast lawn, affects the spreading. For instance, when the yeast lawn grows faster, a bacterial colony prefers a lower initial loading of yeast cells for optimum enhancement in the spread. We confirm our predictions using Candida albicans and C. neoformans, at different initial compositions. In summary, our work shows the importance of considering the dynamically changing physical environment while studying bacterial motility in complex environments.Comment: 14 pages of main text, 5 figures, 4 pages of SI adde

    A small angle neutron scattering study of the vortex matter in La{2-x}Sr{x}CuO{4} (x=0.17)

    Full text link
    The magnetic phase diagram of slightly overdoped La{2-x}Sr{x}CuO{4} (x=0.17) is characterised by a field-induced hexagonal to square transition of the vortex lattice at low fields (~0.4 Tesla) [R. Gilardi et al., Phys. Rev. Lett. 88, 217003 (2002)]. Here we report on a small angle neutron scattering study of the vortex lattice at higher fields, that reveals no further change of the coordination of the square vortex lattice up to 10.5 Tesla applied perpendicular to the CuO2 planes. Moreover, it is found that the diffraction signal disappears at temperatures well below Tc, due to the melting of the vortex lattice.Comment: 3 pages, 2 figures. Presented at the New3SC-4 meeting, San Diego, Jan. 16-21 2003; to be published in Int. J. Mod. Phys.

    Non-developing ascospores in apothecia of asexually reproducing lichen-forming fungi

    Get PDF
    The presence of apothecia in mixed species (vegetatively reproducing lichens, occasionally producing ascomata) has been interpreted as a mechanism to increase genetic variability in mostly clonal populations. However, spore viability from these apothecia has not been studied. We asked whether ascospores of the mixed species Physconia grisea are viable and thereby contribute to increasing the genetic diversity within populations of this species. An ontogenetic study of spores in cultures of P. grisea and a related sexual species (P. distorta), showed that although mature apothecia from both species produced and discharged meiospores capable of germination, spores from P. grisea were only rarely (0.43 %) able to continue development whereas those from P. distorta germinated and developed successfully. The strongly reduced viability of P. grisea spores suggested that they do not have a strong reproductive function, at least in the two local populations analyzed. Additionally, we show that the segregation of Physconia grisea ssp. lilacina does not have molecular support. [Int Microbiol 2013; 16(3):XXX-XXX]Keywords: Physconia spp. · apothecia · sexual reproduction · germination · ontogenetic development · mixed specie

    Molecular contrast in optical coherence tomography using a pump-probe technique and a optical switch suppression technique

    Get PDF
    We describe two novel techniques for contrast enhancement in optical coherence tomography (OCT) which enables molecular specific imaging. The first, a pump-probe technique, is employed in which a pulsed pump laser is tuned to ground-state absorption in a molecule of interest. The location of the target molecule population is derived from the resulting transient absorption of OCT sample arm light acting as probe light. Preliminary results exhibiting contrast enhancement in cross-sectional OCT images using methylene blue dye are presented. The second method is an optical switch suppression technique based on the use of a transmembrane protein called bacteriorhodopsin. Initial experiments indicate that biochemical optical switches, such as bacteriorhodopsin, are excellent contrast agent candidates for molecular contrast OCT

    Molecular contrast in optical coherence tomography using a pump-probe technique and a optical switch suppression technique

    Get PDF
    We describe two novel techniques for contrast enhancement in optical coherence tomography (OCT) which enables molecular specific imaging. The first, a pump-probe technique, is employed in which a pulsed pump laser is tuned to ground-state absorption in a molecule of interest. The location of the target molecule population is derived from the resulting transient absorption of OCT sample arm light acting as probe light. Preliminary results exhibiting contrast enhancement in cross-sectional OCT images using methylene blue dye are presented. The second method is an optical switch suppression technique based on the use of a transmembrane protein called bacteriorhodopsin. Initial experiments indicate that biochemical optical switches, such as bacteriorhodopsin, are excellent contrast agent candidates for molecular contrast OCT

    Muons as Local Probes of Three-body Correlations in the Mixed State of Type-II Superconductors

    Full text link
    The vortex glass state formed by magnetic flux lines in a type-II superconductor is shown to possess non-trivial three-body correlations. While such correlations are usually difficult to measure in glassy systems, the magnetic fields associated with the flux vortices allow us to probe these via muon-spin rotation measurements of the local field distribution. We show via numerical simulations and analytic calculations that these observations provide detailed microscopic insight into the local order of the vortex glass and more generally validate a theoretical framework for correlations in glassy systems.Comment: 4+ pages, high-quality figures available on reques

    Direct observation of the flux-line vortex glass phase in a type II superconductor

    Full text link
    The order of the vortex state in La_{1.9} Sr_{0.1} CuO_{4} is probed using muon spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines. In the vicinity of the transition the microscopic behavior reflects a delicate interplay of thermally-induced and pinning-induced disorder.Comment: 14 pages, 4 colour figures include

    Atmospheric dispersion corrector for a multi-object spectroscopic mode of HROS-TMT

    Full text link
    Highly multiplexed spectroscopic surveys have changed the astronomy landscape in recent years. However, these surveys are limited to low and medium spectral resolution. High spectral resolution spectroscopy is often photon starved and will benefit from a large telescope aperture. Multiplexed high-resolution surveys require a wide field of view and a large aperture for a suitable large number of bright targets. This requirement introduces several practical difficulties, especially for large telescopes, such as the future ELTs. Some of the challenges are the need for a wide field atmospheric dispersion corrector and to deal with the curved non-telecentric focal plane. Here, we present a concept of Multi-Object Spectroscopy (MOS) mode for TMT High-Resolution Optical Spectrograph (HROS), we have designed an atmospheric dispersion corrector for individual objects that fit inside a fiber positioner. We present the ZEMAX design and the performance of the atmospheric dispersion corrector for all elevations accessible by TMT
    • …
    corecore