252 research outputs found

    Data analysis study and performance evaluation of the scanning laser Doppler system

    Get PDF
    A simulation program which provided information on theoretically expected vortex spectra, evaluations of potential algorithms, and expected location accuracies for given scan patterns is presented. Field tests using an aircraft engine flow field and aircraft vortices during flyby tests were compared to the results of the simulation. From these studies, a vortex location algorithm was developed which provided vortex location for one or two vortices as a function of time. Results of this algorithm used on data from flyby tests were used to study vortex transport, to evaluate system performance, and to provide suggestions for real-time vortex location algorithms. The results of real-time analysis were compared to those which were expected based on theoretical considerations

    Aviation safety research and transportation/hazard avoidance and elimination

    Get PDF
    Data collected by the Scanning Laser Doppler Velocimeter System (SLDVS) was analyzed to determine the feasibility of the SLDVS for monitoring aircraft wake vortices in an airport environment. Data were collected on atmospheric vortices and analyzed. Over 1600 landings were monitored at Kennedy International Airport and by the end of the test period 95 percent of the runs with large aircraft were producing usable results in real time. The transport was determined in real time and post analysis using algorithms which performed centroids on the highest amplitude in the thresholded spectrum. Making use of other parameters of the spectrum, vortex flow fields were studied along with the time histories of peak velocities and amplitudes. The post analysis of the data was accomplished with a CDC-6700 computer using several programs developed for LDV data analysis

    Influence of supercoiling on the disruption of dsDNA

    Full text link
    We propose that supercoiling energizes double-stranded DNA (dsDNA) so as to facilitate thermal fluctuations to an unzipped state. We support this with a model of two elastic rods coupled via forces that represent base pair interactions. Supercoiling is shown to lead to a spatially localized higher energy state in a small region of dsDNA consisting of a few base pairs. This causes the distance between specific base pairs to be extended, enhancing the thermal probability for their disruption. Our theory permits the development of an analogy between this unzipping transition and a second order phase transition, for which the possibility of a new set of critical exponents is identified

    Statistical Models on Spherical Geometries

    Full text link
    We use a one-dimensional random walk on DD-dimensional hyper-spheres to determine the critical behavior of statistical systems in hyper-spherical geometries. First, we demonstrate the properties of such a walk by studying the phase diagram of a percolation problem. We find a line of second and first order phase transitions separated by a tricritical point. Then, we analyze the adsorption-desorption transition for a polymer growing near the attractive boundary of a cylindrical cell membrane. We find that the fraction of adsorbed monomers on the boundary vanishes exponentially when the adsorption energy decreases towards its critical value.Comment: 8 pages, latex, 2 figures in p

    Detection of the tagged or untagged photons in acousto-optic imaging of thick highly scattering media by photorefractive adaptive holography

    Full text link
    We propose an original adaptive wavefront holographic setup based on the photorefractive effect (PR), to make real-time measurements of acousto-optic signals in thick scattering media, with a high flux collection at high rates for breast tumor detection. We describe here our present state of art and understanding on the problem of breast imaging with PR detection of the acousto-optic signal

    Thermodynamic picture of the glassy state

    Full text link
    A picture for thermodynamics of the glassy state is introduced. It assumes that one extra parameter, the effective temperature, is needed to describe the glassy state. This explains the classical paradoxes concerning the Ehrenfest relations and the Prigogine-Defay ratio. As a second part, the approach connects the response of macroscopic observables to a field change with their temporal fluctuations, and with the fluctuation-dissipation relation, in a generalized non-equilibrium way.Comment: Proceedings of the Conference "Unifying Concepts in Glass Physics", ICTP, Trieste, 15 - 18 September 199

    Ehrenfest relations at the glass transition: solution to an old paradox

    Full text link
    In order to find out whether there exists a thermodynamic description of the glass phase, the Ehrenfest relations along the glass transition line are reconsidered. It is explained that the one involving the compressibility is always satisfied, and that the one involving the specific heat is principally incorrect. Thermodynamical relations are presented for non-ergodic systems with a one-level tree in phase space. They are derived for a spin glass model, checked for other models, and expected to apply, e.g., to glass forming liquids. The second Ehrenfest relation gets a contribution from the configurational entropy.Comment: 4 pages revtex, to appear in Phys. Rev. Let

    The physical determinants of the thickness of lamellar polymer crystals

    Full text link
    Based upon kinetic Monte Carlo simulations of crystallization in a simple polymer model we present a new picture of the mechanism by which the thickness of lamellar polymer crystals is constrained to a value close to the minimum thermodynamically stable thickness. This description contrasts with those given by the two dominant theoretical approaches.Comment: 4 pages, 4 figures, revte

    Non-Markovian Configurational Diffusion and Reaction Coordinates for Protein Folding

    Full text link
    The non-Markovian nature of polymer motions is accounted for in folding kinetics, using frequency-dependent friction. Folding, like many other problems in the physics of disordered systems, involves barrier crossing on a correlated energy landscape. A variational transition state theory (VTST) that reduces to the usual Bryngelson-Wolynes Kramers approach when the non-Markovian aspects are neglected is used to obtain the rate, without making any assumptions regarding the size of the barrier, or the memory time of the friction. The transformation to collective variables dependent on the dynamics of the system allows the theory to address the controversial issue of what are ``good'' reaction coordinates for folding.Comment: 9 pages RevTeX, 3 eps-figures included, submitted to PR
    corecore