92 research outputs found
Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy
Perturbative coefficients for Wilson loops and the static-quark self-energy
are extracted from Monte Carlo simulations at weak coupling. The lattice
volumes and couplings are chosen to ensure that the lattice momenta are all
perturbative. Twisted boundary conditions are used to eliminate the effects of
lattice zero modes and to suppress nonperturbative finite-volume effects due to
Z(3) phases. Simulations of the Wilson gluon action are done with both periodic
and twisted boundary conditions, and over a wide range of lattice volumes (from
to ) and couplings (from to ).
A high precision comparison is made between the simulation data and results
from finite-volume lattice perturbation theory. The Monte Carlo results are
shown to be in excellent agreement with perturbation theory through second
order. New results for third-order coefficients for a number of Wilson loops
and the static-quark self-energy are reported.Comment: 36 pages, 15 figures, REVTEX documen
Structure, Organization, and Expression of the lct Gene for Lacticin 481, a Novel Lantibiotic Produced by Lactococcus lactis
The structural gene for the lactococcal lantibiotic lacticin 481 (lct) has been identified and cloned using a degenerated 20-mer DNA oligonucleotide based on the amino-terminal 7 amino acid residues of the purified protein. The transcription of the lct gene was analyzed, and its promoter was mapped. DNA sequence analysis of the lct gene revealed an open reading frame encoding a peptide of 51 amino acids. Comparison of its deduced amino acid sequence with the amino-terminal sequence and the amino acid composition of lacticin 481 indicates that the 61-residue peptide is prelacticin 481, containing a 27-residue carboxyl-terminal propeptide and a 24-residue amino-terminal leader peptide which lacks the properties of a typical signal sequence and which is significantly different from the leaders of other lantibiotics. The predicted amino acid sequence of prolacticin 481 contains 3 cysteines, 2 serines, and 2 threonines which were not detectable in amino acid analyses of mature lacticin 481. Based on these results and on characterization by two-dimensional NMR techniques, a structural model is proposed in which 2 cysteine residues are involved in lanthionine and one in β-methyllanthionine formation, and a 4th threonine residue is dehydrated. This model predicts a molecular mass for lacticin 481 of 2,901, which is in excellent agreement with that obtained from mass spectrometry.
Principales utilisations des enzymes en industrie laitiere. Aspects scientifiques et techniques
National audienc
ISOLEMENT, PURIFICATION ET PROPRIÉTÉS D'UNE PROTÉASE EXOCELLULAIRE DE MICROCOCCUS CASEOLYTICUS
International audienc
- …