1,162 research outputs found

    Cosmic Rays from Gamma Ray Bursts in the Galaxy

    Full text link
    The rate of terrestrial irradiation events by galactic gamma-ray bursts (GRBs) is estimated using recent standard-energy results. We assume that GRBs accelerate high-energy cosmic rays, and present results of three-dimensional simulations of cosmic rays moving in the Galactic magnetic field and diffusing through pitch-angle scattering. An on-axis GRB extinction event begins with a powerful prompt gamma-ray and neutron pulse, followed by a longer-lived phase from cosmic-ray protons and neutron-decay protons that diffuse towards Earth. Our results force a reinterpretation of reported ~ 10^{18} eV cosmic-ray anisotropies and offer a rigorous test of the model where high-energy cosmic rays originate from GRBs, which will soon be tested with the Auger Observatory.Comment: 9 pages, 4 figures, ApJ Letters, in press. Clarified limit of test-particle approximation, prediction that Auger will not confirm SUGAR source. (Data may not appear onscreen at low magnification.) Simulations at http://heseweb.nrl.navy.mil/gamma/~dermer/invest/sim/index.ht

    Gamma Rays from Compton Scattering in the Jets of Microquasars: Application to LS 5039

    Full text link
    Recent HESS observations show that microquasars in high-mass systems are sources of VHE gamma-rays. A leptonic jet model for microquasar gamma-ray emission is developed. Using the head-on approximation for the Compton cross section and taking into account angular effects from the star's orbital motion, we derive expressions to calculate the spectrum of gamma rays when nonthermal jet electrons Compton-scatter photons of the stellar radiation field. Calculations are presented for power-law distributions of nonthermal electrons that are assumed to be isotropically distributed in the comoving jet frame, and applied to γ\gamma-ray observations of LS 5039. We conclude that (1) the TeV emission measured with HESS cannot result only from Compton-scattered stellar radiation (CSSR), but could be synchrotron self-Compton (SSC) emission or a combination of CSSR and SSC; (2) fitting both the HESS data and the EGRET data associated with LS 5039 requires a very improbable leptonic model with a very hard electron spectrum. Because the gamma rays would be variable in a leptonic jet model, the data sets are unlikely to be representative of a simultaneously measured gamma-ray spectrum. We therefore attribute EGRET gamma rays primarily to CSSR emission, and HESS gamma rays to SSC emission. Detection of periodic modulation of the TeV emission from LS 5039 would favor a leptonic SSC or cascade hadron origin of the emission in the inner jet, whereas stochastic variability alone would support a more extended leptonic model. The puzzle of the EGRET gamma rays from LS 5039 will be quickly solved with GLAST. (Abridged)Comment: 17 pages, 11 figures, ApJ, in press, June 1, 2006, corrected eq.

    Blazar synchrotron emission of instantaneously power-law injected electrons under linear synchrotron, non-linear SSC, and combined synchrotron-SSC cooling

    Full text link
    The broadband SEDs of blazars show two distinct components which in leptonic models are associated with synchrotron and SSC emission of highly relativistic electrons. In some sources the SSC component dominates the synchrotron peak by one or more orders of magnitude implying that the electrons mainly cool by inverse Compton collisions with their self-made synchrotron photons. Therefore, the linear synchrotron loss of electrons, which is normally invoked in emission models, has to be replaced by a nonlinear loss rate depending on an energy integral of the electron distribution. This modified electron cooling changes significantly the emerging radiation spectra. It is the purpose of this work to apply this new cooling scenario to relativistic power-law distributed electrons, which are injected instantaneously into the jet. We will first solve the differential equation of the volume-averaged differential number density of the electrons, and then discuss their temporal evolution. Since any non-linear cooling will turn into linear cooling after some time, we also calculated the electron number density for a combined cooling scenario consisting of both the linear and non-linear cooling. For all cases, we will also calculate analytically the emerging optically thin synchrotron fluence spectrum which will be compared to a numerical solution. For small normalized frequencies f < 1 the fluence spectra show constant spectral indices. We find for linear cooling a_SYN = 1/2, and for non-linear cooling a_SSC = 3/2. In the combined cooling scenario we obtain for the small injection parameter b_1 = 1/2, and for the large injection parameter b_2 = 3/2, which becomes b_1 = 1/2 for very small frequencies, again. This is the same behaviour as for monoenergetically injected electrons.Comment: 24 pages, 25 figures, submitted to A&

    The obscured gamma-ray and UHECR universe

    Full text link
    Auger results on clustering of > 60 EeV ultra-high energy cosmic ray (UHECR) ions and the interpretation of the gamma-ray spectra of TeV blazars are connected by effects from the extragalactic background light (EBL). The EBL acts as an obscuring medium for gamma rays and a reprocessing medium for UHECR ions and protons, causing the GZK cutoff. The study of the physics underlying the coincidence between the GZK energy and the clustering energy of UHECR ions favors a composition of > 60 EeV UHECRs in CNO group nucleons. This has interesting implications for the sources of UHECRs. We also comment on the Auger analysis.Comment: 11 pages, 10 figures, in the International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, Sendai, Japan, September 11-15, 200

    Best-Bet Astrophysical Neutrino Sources

    Get PDF
    Likely astrophysical sources of detectable high-energy (>> TeV) neutrinos are considered. Based on gamma-ray emission properties, the most probable sources of neutrinos are argued to be GRBs, blazars, microquasars, and supernova remnants. Diffuse neutrino sources are also briefly considered.Comment: 6 pages, 2 figures, in Proc. of TeV-Particle Astrophysics II, Madison, WI, 28-31 Aug, 200
    corecore