47 research outputs found

    Living myocardial slices for the study of nucleic acid-based therapies

    Get PDF
    Gene therapy based on viral vectors offers great potential for the study and the treatment of cardiac diseases. Here we explore the use of Living Myocardial Slices (LMS) as a platform for nucleic acid-based therapies. Rat LMS and Adeno-Associated viruses (AAV) were used to optimise and analyse gene transfer efficiency, viability, tissue functionality, and cell tropism in cardiac tissue. Human cardiac tissue from failing (dilated cardiomyopathy) hearts was also used to validate the model in a more translational setting. LMS were cultured at physiological sarcomere length for 72-h under electrical stimulation. Two recombinant AAV serotypes (AAV6 and AAV9) at different multiplicity of infection (MOI) expressing enhanced green fluorescent protein (eGFP) were added to the surface of rat LMS. AAV6 at 20,000 MOI proved to be the most suitable serotype without affecting LMS contractility or kinetics and showing high transduction and penetrability efficiency in rat LMS. This serotype exhibited 40% of transduction efficiency in cardiomyocytes and stromal cells while 20% of the endothelial cells were transduced. With great translational relevance, this protocol introduces the use of LMS as a model for nucleic acid-based therapies, allowing the acceleration of preclinical studies for cardiac diseases

    Bone Marrow Mesenchymal Stem Cells for Improving Hematopoietic Function: An In Vitro and In Vivo Model. Part 2: Effect on Bone Marrow Microenvironment

    Get PDF
    The aim of the present study was to determine how mesenchymal stem cells (MSC) could improve bone marrow (BM) stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC) were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin,) involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (IV) or intrabone (IB) route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur

    Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial

    Get PDF
    Background: Elevated proinflammatory cytokines are associated with greater COVID-19 severity. We aimed to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19. Methods: We did a 60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial at 45 hospitals in Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain. We included adults (≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and pneumonia, who required oxygen supplementation or intensive care. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo. Patients, care providers, outcome assessors, and investigators remained masked to assigned intervention throughout the course of the study. The primary endpoint was time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population. The key secondary endpoint was proportion of patients alive at day 29. Safety outcomes included adverse events and laboratory assessments. This study is registered with ClinicalTrials.gov, NCT04327388; EudraCT, 2020-001162-12; and WHO, U1111-1249-6021. Findings: Between March 28 and July 3, 2020, of 431 patients who were screened, 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12·0 days [95% CI 9·0 to 15·0]) and sarilumab 200 mg (10·0 days [9·0 to 12·0]; hazard ratio [HR] 1·03 [95% CI 0·75 to 1·40]; log-rank p=0·96) or sarilumab 400 mg (10·0 days [9·0 to 13·0]; HR 1·14 [95% CI 0·84 to 1·54]; log-rank p=0·34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference −1·7 [−9·3 to 5·8]; p=0·63 vs placebo; and 159 [92%] of 173 patients in the sarilumab 400 mg group; difference 0·2 [−6·9 to 7·4]; p=0·85 vs placebo). At day 29, there were numerical, non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%; difference +8·9% [95% CI −7·7 to 25·5]; p=0·25) for patients who had critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group. Interpretation: This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen. Adequately powered trials of targeted immunomodulatory therapies assessing survival as a primary endpoint are suggested in patients with critical COVID-19. Funding: Sanofi and Regeneron Pharmaceuticals

    Clinical, hematological and cytogenetic characteristics of atypical chronic myeloid leukemia.

    No full text
    BACKGROUND: Atypical chronic myeloid leukemia (aCML) is an infrequent chronic myeloproliferative disorder characterized by leukocytosis, absence of Philadelphia chromosome or BCR-ABL rearrangement, and marked myeloid dysplasia. Some cases have an absolute monocytosis but can be distinguished from chronic myelomonocytic leukemia (CMML) by the presence of a higher percentage (> 15%) of circulating immature granulocytes. PATIENTS AND METHODS: In a series of 11 patients with a diagnosis of aCML according to the FAB proposals we have analyzed the most relevant clinical, hematological and cytogenetic characteristics. RESULTS: The median age was 65 years (16-84). All but one case showed, at time of diagnosis, leukocytosis (median WBC was 36 x 10(9)/l), 55% had moderate anemia and 36% had thrombocytopenia. Most cases had marked dysplasia, particularly in the granulocytic lineage (82% of the cases), and all cases showed bone marrow red hypoplasia. Cytogenetic abnormalities were present in 9 out of the 11 patients. Trisomy 8 was observed in three cases and other clonal chromosomal abnormalities included deletions of 5q, 13q, 17p, 12q, and 11q as well as a t(6;8)(p23;q22) translocation. Fluorescence in situ hybridization (FISH) studies failed to demonstrate ETV-6 gene involvement. The median survival time from diagnosis was only 14 months (range 3-56 months). CONCLUSIONS: These data suggest that aCML is a rare disease which is characterized by leukocytosis, with dysgranulopoiesis, BM erythroid hypoplasia, chromosomal, though not recurrent, abnormalities and poor prognosis

    Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling

    No full text
    The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk precipitate dissolution is incomplete in wafers with high metal content, specifically ingot border material. Postdiffusion low-temperature annealing is not found to alter appreciably the size or spatial distribution of FeSi[subscript 2] precipitates, although cell efficiency improves due to a decrease in iron interstitial concentration. Gettering simulations successfully model experiment results and suggest the efficacy of high- and low-temperature processing to reduce both precipitated and interstitial iron concentrations, respectively.United States. Dept. of Energy (Contract DE-FG36-09GO1900)Spanish Ministry of Science and Innovation (Thincells Project TEC2008-06798-C03-02

    Ex vivo identification and characterization of a population of CD13(high) CD105(+) CD45(-) mesenchymal stem cells in human bone marrow

    Get PDF
    Introduction: Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and multilineage differentiation. Their multipotential capacity and immunomodulatory properties have led to an increasing interest in their biological properties and therapeutic applications. Currently, the definition of MSCs relies on a combination of phenotypic, morphological and functional characteristics which are typically evaluated upon in vitro expansion, a process that may ultimately lead to modulation of the immunophenotypic, functional and/or genetic features of these cells. Therefore, at present there is great interest in providing markers and phenotypes for direct in vivo and ex vivo identification and isolation of MSCs. Methods: Multiparameter flow cytometry immunophenotypic studies were performed on 65 bone marrow (BM) samples for characterization of CD13(high) CD105(+) CD45(-) cells. Isolation and expansion of these cells was performed in a subset of samples in parallel to the expansion of MSCs from mononuclear cells following currently established procedures. The protein expression profile of these cells was further assessed on (paired) primary and in vitro expanded BM MSCs, and their adipogenic, chondrogenic and osteogenic differentiation potential was also determined. Results: Our results show that the CD13(high) CD105(+) CD45(-) immunophenotype defines a minor subset of cells that are systematically present ex vivo in normal/reactive BM (n = 65) and that display immunophenotypic features, plastic adherence ability, and osteogenic, adipogenic and chondrogenic differentiation capacities fully compatible with those of MSCs. In addition, we also show that in vitro expansion of these cells modulates their immunophenotypic characteristics, including changes in the expression of markers currently used for the definition of MSCs, such as CD105, CD146 and HLA-DR. Conclusions: BM MSCs can be identified ex vivo in normal/reactive BM, based on a robust CD13(high) CD105(+) and CD45(-) immunophenotypic profile. Furthermore, in vitro expansion of these cells is associated with significant changes in the immunophenotypic profile of MSCs
    corecore