29 research outputs found

    Environmental Effects on the Growth and Development of Eastern Oyster, Crassostrea virginica (Gmelin, 1791), Larvae: A Modeling Study

    Get PDF
    The effects of temperature, food concentration, salinity and turbidity on the growth and development of Crassostrea virginica larvae were investigated with a time-dependent mathematical model. Formulations used in the model for larval growth are based upon laboratory data. Simulations were done using temperature conditions characteristic of Laguna Madre, Galveston Bay, Apalachicola Bay, North Inlet and Chesapeake Bay. These simulations show that the duration of the planktonic larval phase, which is determined by larval growth rate, decreases at lower latitudes in response to warmer water temperatures. Also, oysters in the more southern locations have a longer spawning season during which the oyster population can produce more larvae. Simulations were done for Galveston Bay and Chesapeake Bay using idealized time series of food supply that included higher concentrations in the spring, summer or fall. Additional simulations considered the effects of increased food supply in both spring and fall seasons. The results show that shifting the period of enhanced food supply from March-April to April-May, when temperatures are warmer, reduces the minimum larval planktonic period from 44 to 34 days. Shifting the fall bloom from August-September to September-October, however, does not appreciably change the minimum larval planktonic period. The final set of simulations considered the effect of low salinity events and turbidity on the planktonic period of the larvae of Crassostrea virginica. By imposing a simulated low salinity (5 ppt) event of one month duration in August, the larval planktonic time is increased by about 39% over normal August salinities. Turbidity concentrations less than 0.1 g l-1 result in slightly decreased planktonic times. These model results show clearly the importance of ambient environmental conditions in determining the planktonic time of larvae of Crassostrea virginica, and hence their ultimate recruitment to the adult oyster population

    A Modeling Study of the Effects of Size- and Depth-Dependent Predation on Larval Survival

    Get PDF
    The form of the predation pressure experienced by larval stages of marine invertebrates is largely unknown. However, it is believed that the type, timing and rate of larval predation are critical in determining recruitment to adult populations. In this study, a time and depth-dependent model of the growth and behavior of larvae of the Eastern oyster, Crassostrea virginica, was used to investigate the effects of different forms of size-and depth-dependent predation on larval survivorship. The simulated larval survival for a cohort experiencing size-dependent predation showed that the greatest percent of the cohort survived to competent settlement size when the predation pressure decreased with increasing larval size. Additional simulations that included different types of depth-dependent predation showed that the interaction between vertical larval migration behavior and predation determined the percent of the cohort that survived to settlement size. The simulated distributions show that a higher percent of larvae survive when the predation pressure is concentrated in the surface waters. A lower percent of larvae survive to competent settlement size when the predation pressure is concentrated near the bottom. The different forms of size-and depth-dependent predation result in variations in the number of larvae present in the water column during each larval development stage. Thus, different forms of predation impact the number of larvae available for dispersal throughout the marine environment. These results have important implications concerning the exchange of genetic material between populations

    Thin layers and camouflage: hidden \u3cem\u3ePseudo-nitzschia\u3c/em\u3e spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA

    Get PDF
    Two sets of observations were made on the distribution of Pseudo-nitzschia taxa in a fjord in the San Juan Islands, Washington, USA. From May 21 to 31, 1996, we observed the spatio-temporal distribution of a dense bloom of P. fraudulenta. Microscopic observations of live material were compared to physical-optical water-column structure, currents and wind. At the start of the study, dense concentrations of Pseudo-nitzschia spp. were observed directly at the surface. Optical profiles indicated that most cells were concentrated in a thin layer at ~5 m depth, which appeared to be contiguous throughout the sound. Several days later, sustained winds forced a plume of lighter water over the surface of the sound, displacing the original water mass, with its entrained flora, to depth. The resulting near-bottom thin layer persisted for several days, and contained \u3e106 Pseudo-nitzschia spp. cells l-1. Microscopic examination of live cells from the deep layer revealed that colonies were alive and motile. In 1996 and again in 1998, we observed P. pseudodelicatissima living within colonies of Chaetoceros socialis. Water-column thin layers, near-bottom thin layers and populations of Pseudo-nitzschia spp. within C. socialis colonies could easily escape detection by routine monitoring procedures, and may be a potential source of unexplained toxicity events

    Modeling the Vertical Distribution of Oyster Larvae in Response to Environmental Conditions

    Get PDF
    A size-structured, time and vertically-dependent model was used to investigate the effects of water column structure on the distribution of larvae of the oyster Crassostrea virginica. Formulations used to model larval growth and behavior are based upon laboratory studies. Simulated vertical larval distributions obtained for conditions representative of a well-mixed, partially stratified and strongly stratified water column illustrate the effect that salinity and temperature gradients have on moderating larval swimming and hence on larvae vertical location. For well-mixed conditions, smaller larvae are dispersed throughout most of the water column. For strongly stratified conditions, the smaller-sized larvae cluster within the region of strong salinity change. Intermediate-sized larvae cluster within or directly below the region of strong salinity change. The oldest larvae are found near the bottom for all salinity conditions since their location is determined primarily by sinking rate. Additional simulations show that diurnal salinity changes interact with larval behavioral responses to create patchy larval distributions. Finally, simulations show that the inclusion of an upwelling or downwelling velocity can overwhelm the behavioral responses of smaller larvae and result in much different vertical distributions. The simulated vertical larval distributions show that changes in larval migratory behavior which are brought about by changes in the vertical salinity gradient can significantly alter larval distribution patterns. These, when combined with horizontal advective flows, have important implications for larval dispersal

    Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes

    Get PDF
    In 1996 three cruises were conducted to simultaneously quantify the fine-scale optical and physical structure of the water column. Data from 120 profiles were used to investigate the temporal occurrence and spatial distribution of thin layers of phytoplankton as they relate to variations in physical processes. Thin layers ranged in thickness from a few centimeters to a few meters. They may extend horizontally for kilometers and persist for days. Thin layers are a recurring feature in the marine environment; they were observed and measured in 54% of our profiles. Physical processes are important in the temporal and spatial distribution of thin layers. Thin layer depth was closely associated with depth and strength of the pycnocline. Over 71% of all thin layers were located at the base of, or within, the pycnocline. The strong statistical relationships between thin layers and physical structure indicate that we cannot understand thin layer dynamics without understanding both local circulation patterns and regional physical forcing

    Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord

    Get PDF
    Huge accumulations of diatom-dominated marine snow (aggregates \u3e0.5 mm in diameter) were observed in a layer approximately 50 cm thick persisting over a 24 h period in a shallow fjord in the San Juan Islands, Washington, USA. The layer was associated with the 22.4 σt density surface. A second thin layer of elevated phytoplankton concentration located at a density discontinuity 1.5 to 2 m above the marine snow layer occurred within a dense diatom bloom near the surface. At the end of the study period, isopycnals shoaled and the 2 layers merged. More than 80% of the diatom bloom consisted of Thalassiosira spp. (50 to 59%), Odontella longicruris (5 to 14%), Asterionellopsis glacialis, and Thalassionema nitzschioides. A much higher proportion of O. longicruris occurred in marine snow (about 53%) than among suspended cells suggesting that this species differentially aggregated. Most zooplankton avoided the mucus-rich aggregate layer. The layer of marine snow was formed when sinking aggregated diatoms reached neutral buoyancy at the 22.4 isopycnal, probably due to the presence of low salinity mucus resistant to salt exchange in the interstices of the aggregates. Rates of turbulent kinetic energy dissipation throughout the water column rarely exceeded 10-8 m2 s-3 and aggregates below the thin layer were largely detrital in composition indicating that small-scale shears due to turbulence did not erode the layer of marine snow. The accumulation of marine snow and phytoplankton in persistent, discrete layers at density discontinuities results in habitat partitioning of the pelagic zone, impacts the distribution and interactions of planktonic organisms as well as the intensity and location of biological processes in the water column, and helps maintain species diversity

    A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C10020, doi:10.1029/2009JC005317.A synthetic moored array composed of five buoyancy-propelled autonomous underwater gliders was used to characterize mesoscale variability and phytoplankton distribution in a 100 km × 100 km domain in the Philippine Sea east of Luzon Strait for 10 days in May 2004. The study area, located east of the Kuroshio near the subtropical front, is dominated by strong internal tides, by energetic westward-propagating mesoscale eddies with azimuthal velocities exceeding 50 cm/s, and by a deep (130 m) maximum in chlorophyll fluorescence. Each glider in the array was instructed to maintain geographic position while repeatedly profiling to 200-m depth. Good station-keeping performance enabled the resulting series of vertical profiles to be interpreted in the same manner as a physically moored chain of instruments. Although organized primarily as a demonstration of glider capabilities, this field exercise provides a unique data set for examining biological-physical interactions in the open ocean. Here we report on the evolution of a thin layer of phytoplankton observed near the deep chlorophyll maximum. Coincident observations of fine structure in temperature and salinity suggest that the thinning process of this layer was driven primarily by physical forcing, most probably vertical shear associated with energetic diurnal internal waves, as opposed to a biological mechanism, such as convergent swimming, grazing, or spatial variation in growth rate.The Office of Naval Research provided support for fieldwork and analysis through grants N-00014-00-1-0256 and N-00014-05-1-0367
    corecore