119 research outputs found

    How to Securely Compute the Modulo-Two Sum of Binary Sources

    Full text link
    In secure multiparty computation, mutually distrusting users in a network want to collaborate to compute functions of data which is distributed among the users. The users should not learn any additional information about the data of others than what they may infer from their own data and the functions they are computing. Previous works have mostly considered the worst case context (i.e., without assuming any distribution for the data); Lee and Abbe (2014) is a notable exception. Here, we study the average case (i.e., we work with a distribution on the data) where correctness and privacy is only desired asymptotically. For concreteness and simplicity, we consider a secure version of the function computation problem of K\"orner and Marton (1979) where two users observe a doubly symmetric binary source with parameter p and the third user wants to compute the XOR. We show that the amount of communication and randomness resources required depends on the level of correctness desired. When zero-error and perfect privacy are required, the results of Data et al. (2014) show that it can be achieved if and only if a total rate of 1 bit is communicated between every pair of users and private randomness at the rate of 1 is used up. In contrast, we show here that, if we only want the probability of error to vanish asymptotically in block length, it can be achieved by a lower rate (binary entropy of p) for all the links and for private randomness; this also guarantees perfect privacy. We also show that no smaller rates are possible even if privacy is only required asymptotically.Comment: 6 pages, 1 figure, extended version of submission to IEEE Information Theory Workshop, 201

    An isogeometric finite element formulation for phase transitions on deforming surfaces

    Get PDF
    This paper presents a general theory and isogeometric finite element implementation for studying mass conserving phase transitions on deforming surfaces. The mathematical problem is governed by two coupled fourth-order nonlinear partial differential equations (PDEs) that live on an evolving two-dimensional manifold. For the phase transitions, the PDE is the Cahn-Hilliard equation for curved surfaces, which can be derived from surface mass balance in the framework of irreversible thermodynamics. For the surface deformation, the PDE is the (vector-valued) Kirchhoff-Love thin shell equation. Both PDEs can be efficiently discretized using C1C^1-continuous interpolations without derivative degrees-of-freedom (dofs). Structured NURBS and unstructured spline spaces with pointwise C1C^1-continuity are utilized for these interpolations. The resulting finite element formulation is discretized in time by the generalized-α\alpha scheme with adaptive time-stepping, and it is fully linearized within a monolithic Newton-Raphson approach. A curvilinear surface parameterization is used throughout the formulation to admit general surface shapes and deformations. The behavior of the coupled system is illustrated by several numerical examples exhibiting phase transitions on deforming spheres, tori and double-tori.Comment: fixed typos, extended literature review, added clarifying notes to the text, added supplementary movie file

    Interactive Secure Function Computation

    Get PDF
    We consider interactive computation of randomized functions between two users with the following privacy requirement: the interaction should not reveal to either user any extra information about the other user's input and output other than what can be inferred from the user's own input and output. We also consider the case where privacy is required against only one of the users. For both cases, we give single-letter expressions for feasibility and optimal rates of communication. Then we discuss the role of common randomness and interaction in both privacy settings. We also study perfectly secure non-interactive computation when only one of the users computes a randomized function based on a single transmission from the other user. We characterize randomized functions which can be perfectly securely computed in this model and obtain tight bounds on the optimal message lengths in all the privacy settings.Comment: 30 pages. Revised based on comments from the reviewer

    On the Communication Complexity of Secure Computation

    Get PDF
    Information theoretically secure multi-party computation (MPC) is a central primitive of modern cryptography. However, relatively little is known about the communication complexity of this primitive. In this work, we develop powerful information theoretic tools to prove lower bounds on the communication complexity of MPC. We restrict ourselves to a concrete setting involving 3-parties, in order to bring out the power of these tools without introducing too many complications. Our techniques include the use of a data processing inequality for {\em residual information} --- i.e., the gap between mutual information and Gács-Körner common information, a new {\em information inequality} for 3-party protocols, and the idea of {\em distribution switching} by which lower bounds computed under certain worst-case scenarios can be shown to apply for the general case. Using these techniques we obtain tight bounds on communication complexity by MPC protocols for various interesting functions. In particular, we show concrete functions that have ``communication-ideal\u27\u27 protocols, which achieve the minimum communication simultaneously on all links in the network. Also, we obtain the first {\em explicit} example of a function that incurs a higher communication cost than the input length in the secure computation model of Feige, Kilian and Naor \cite{FeigeKiNa94}, who had shown that such functions exist. We also show that our communication bounds imply tight lower bounds on the amount of randomness required by MPC protocols for many interesting functions
    • …
    corecore