430 research outputs found

    Using Satellite Data to Support Fieldwork: Can Species Distributions Be Predicted?

    Get PDF
    Although species extinction has become a global concern during the last decade, our knowledge of species distribution patterns remains limited. If we don\u27t know where a species has existed historically, we cannot determine if its range is contracting or expanding. This can make it difficult to identify a species as endangered until it is close to extinction. One way to address this problem is to try to predict which species may be at risk based on their habitat distributions

    Quantifying Relationships Between Bird and Butterfly Community Shifts and Environmental Change

    Get PDF
    Quantifying the manner in which ecological communities respond during a time of decreasing precipitation is a first step in understanding how they will respond to longer-term climate change. Here we coupled analysis of interannual variability in remotely sensed data with analyses of bird and butterfly community changes in montane meadow communities of the Greater Yellowstone Ecosystem. Landsat satellite imagery was used to classify these meadows into six types along a hydrological gradient. The northern portion of the ecosystem, or Gallatin region, has smaller mean patch sizes separated by ridges of mountains, whereas the southern portion of the ecosystem, or Teton region, has much larger patches within the Jackson Hole valley. Both support a similar suite of butterfly and bird species. The Gallatin region showed more overall among-year variation in the normalized difference vegetation index (NDVI) when meadow types were pooled within regions, perhaps because the patch sizes are smaller on average. Bird and butterfly communities showed significant relationships relative to meadow type and NDVI. We identified several key species that are tightly associated with specific meadow types along the hydrological gradient. Comparing taxonomic groups, fewer birds showed specific habitat affinities than butterflies, perhaps because birds are responding to differences in habitat structure among meadow types and using the landscape at a coarser scale than the butterflies. Comparing regions, the Teton region showed higher predictability of community assemblages as compared to the Gallatin region. The Gallatin region exhibited more significant temporal trends with respect to butterflies. Butterfly communities in wet meadows showed a distinctive shift along the hydrological gradient during a drought period (1997–2000). These results imply that the larger Teton meadows will show more predictable (i.e., static) species–habitat associations over the long term, but that the smaller Gallatin meadows may be an area that will exhibit the effects of global climate change faster

    Quantifying Relationships Between Bird And Butterfly Community Shifts And Environmental Change.

    Get PDF
    Quantifying the manner in which ecological communities respond during a time of decreasing precipitation is a first step in understanding how they will respond to longer-term climate change. Here we coupled analysis of interannual variability in remotely sensed data with analyses of bird and butterfly community changes in montane meadow communities of the Greater Yellowstone Ecosystem. Landsat satellite imagery was used to classify these meadows into six types along a hydrological gradient. The northern portion of the ecosystem, or Gallatin region, has smaller mean patch sizes separated by ridges of mountains, whereas the southern portion of the ecosystem, or Teton region, has much larger patches within the Jackson Hole valley. Both support a similar suite of butterfly and bird species. The Gallatin region showed more overall among-year variation in the normalized difference vegetation index (NDVI) when meadow types were pooled within regions, perhaps because the patch sizes are smaller on average. Bird and butterfly communities showed significant relationships relative to meadow type and NDVI. We identified several key species that are tightly associated with specific meadow types along the hydrological gradient. Comparing taxonomic groups, fewer birds showed specific habitat affinities than butterflies, perhaps because birds are responding to differences in habitat structure among meadow types and using the landscape at a coarser scale than the butterflies. Comparing regions, the Teton region showed higher predictability of community assemblages as compared to the Gallatin region. The Gallatin region exhibited more significant temporal trends with respect to butterflies. Butterfly communities in wet meadows showed a distinctive shift along the hydrological gradient during a drought period (1997–2000). These results imply that the larger Teton meadows will show more predictable (i.e., static) species–habitat associations over the long term, but that the smaller Gallatin meadows may be an area that will exhibit the effects of global climate change fasterSincere thanks go out to the University of Wyoming, National Park Service Research Center (AMK Ranch: Henry Harlow, director) for funding and accommodating our research team over the years. We also thank Brian Miller of the Denver Zoological Foundation for funding, collaboration, and general camaraderie. Data collection during 1997–2000 was funded by a grant from the Environmental Protection Agency (EPA) through their Ecological Assessment and Restoration program. Although funded by the EPA (through grant 96-NCERQA-1A to Debinski et al.), it has not been subjected to the Agency’s peer review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred. Additional funding was provided by the Iowa Space Grant Consortium and the Grand Teton Natural History Association. Statistical consulting was provided by Kirk Moloney and Philip Dixon of Iowa State University. This manuscript was improved by the recommendations of M. Turner, C. Boggs, E. Fleishman, and two anonymous reviewers. Finally, thanks to the many field technicians who have helped over the years, especially Amanda Hetrick and Julie Perret

    Selection Of A Novel Aptamer Against Vitronectin Using Capillary Electrophoresis And Next Generation Sequencing

    Get PDF
    Breast cancer (BC) results in ≃40,000 deaths each year in the United States and even among survivors treatment of the disease may have devastating consequences, including increased risk for heart disease and cognitive impairment resulting from the toxic effects of chemotherapy. Aptamer-mediated drug delivery can contribute to improved treatment outcomes through the selective delivery of chemotherapy to BC cells, provided suitable cancer-specific antigens can be identified. We report here the use of capillary electrophoresis in conjunction with next generation sequencing to develop the first vitronectin (VN) binding aptamer (VBA-01; Kd 405 nmol/l, the first aptamer to vitronectin (VN; Kd = 405 nmol/l), a protein that plays an important role in wound healing and that is present at elevated levels in BC tissue and in the blood of BC patients relative to the corresponding nonmalignant tissues. We used VBA-01 to develop DVBA-01, a dimeric aptamer complex, and conjugated doxorubicin (Dox) to DVBA-01 (7:1 ratio) using pH-sensitive, covalent linkages. Dox conjugation enhanced the thermal stability of the complex (60.2 versus 46.5°C) and did not decrease affinity for the VN target. The resulting DVBA-01-Dox complex displayed increased cytotoxicity to MDA-MB-231 BC cells that were cultured on plasticware coated with VN (1.8 × 10⁻⁶mol/l) relative to uncoated plates (2.4 × 10⁻⁶ mol/l), or plates coated with the related protein fibronectin (2.1 × 10⁻⁶ mol/l). The VBA-01 aptamer was evaluated for binding to human BC tissue using immunohistochemistry and displayed tissue specific binding and apparent association with BC cells. In contrast, a monoclonal antibody that preferentially binds to multimeric VN primarily stained extracellular matrix and vessel walls of BC tissue. Our results indicate a strong potential for using VN-targeting aptamers to improve drug delivery to treat BC

    Montane meadow change during drought varies with background hydrologic regime and plant functional group

    Get PDF
    Climate change models for many ecosystems predict more extreme climatic events in the future, including exacerbated drought conditions. Here we assess the effects of drought by quantifying temporal variation in community composition of a complex montane meadow landscape characterized by a hydrological gradient. The meadows occur in two regions of the Greater Yellowstone Ecosystem (Gallatin and Teton) and were classified into six categories (M1–M6, designating hydric to xeric) based upon Satellite pour l’Observation de la Terre (SPOT) satellite imagery. Both regions have similar plant communities, but patch sizes of meadows are much smaller in the Gallatin region. We measured changes in the percent cover of bare ground and plants by species and functional groups during five years between 1997 and 2007. We hypothesized that drought effects would not be manifested evenly across the hydrological gradient, but rather would be observed as hotspots of change in some areas and minimally evident in others. We also expected varying responses by plant functional groups (forbs vs. woody plants). Forbs, which typically use water from relatively shallow soils compared to woody plants, were expected to decrease in cover in mesic meadows, but increase in hydric meadows. Woody plants, such as Artemisia, were expected to increase, especially in mesic meadows. We identified several important trends in our meadow plant communities during this period of drought: (1) bare ground increased significantly in xeric meadows of both regions (Gallatin M6 and Teton M5) and in mesic (M3) meadows of the Teton, (2) forbs decreased significantly in the mesic and xeric meadows in both regions, (3) forbs increased in hydric (M1) meadows of the Gallatin region, and (4) woody species showed increases in M2 and M5 meadows of the Teton region and in M3 meadows of the Gallatin region. The woody response was dominated by changes in Artemisia spp. and Chrysothamnus viscidiflorus. Thus, our results supported our expectations that community change was not uniform across the landscape, but instead could be predicted based upon functional group responses to the spatial and temporal patterns of water availability, which are largely a function of plant water use and the hydrological gradient.This material is based upon research supported by the National Science Foundation under Grants 0518150 and EPS0814387, the Environmental Protection Agency under STAR Grant R825155, the University of Wyoming National Park Service Research Station, and the Grand Teton Natural History Association. We thank the University of Wyoming National Park Service Research Station (particularly Henry Harlow and Sue Consolo-Murphy) and the U.S. Forest Service for providing support and housing. Philip Dixon provided statistical consulting, and Mark Jakubauskas collaborated in setting up our initial field campaigns. Edward Cook assisted in selection and assessment of PDSI data; and Lisa Graumlich, Andy Bunn, Steve Gray, and Jeremy Littel advised us on climate reconstruction options for the GYE. Scott Creel, Sue Fairbanks, and Matt Kaufmann provided information on elk population trends in the region. Jill Sherwood designed the map. William Clark and two anonomous reviewers provided important suggestions that helped improve the manuscript. Finally, we thank the many research technicians and field assistants who helped in the fieldwork

    Evaluating the Utility of Species Distribution Models in Informing Climate Change-Resilient Grassland Restoration Strategy

    Get PDF
    Tallgrass prairie ecosystems in North America are heavily degraded and require effective restoration strategies if prairie specialist taxa are to be preserved. One common management tool used to restore grassland is the application of a seed-mix of native prairie plant species. While this technique is effective in the short-term, it is critical that species' resilience to changing climate be evaluated when designing these mixes. By utilizing species distribution models (SDMs), species' bioclimatic envelopes–and thus the geographic area suitable for them–can be quantified and predicted under various future climate regimes, and current seed-mixes may be modified to include more climate resilient species or exclude more affected species. We evaluated climate response on plant functional groups to examine the generalizability of climate response among species of particular functional groups. We selected 14 prairie species representing the functional groups of cool-season and warm-season grasses, forbs, and legumes and we modeled their responses under both a moderate and more extreme predicted future. Our functional group “composite maps” show that warm-season grasses, forbs, and legumes responded similarly to other species within their functional group, while cool-season grasses showed less inter-species concordance. The value of functional group as a rough method for evaluating climate-resilience is therefore supported, but candidate cool-season grass species will require more individualized attention. This result suggests that seed-mix designers may be able to use species with more occurrence records to generate functional group-level predictions to assess the climate response of species for which there are prohibitively few occurrence records for modeling
    corecore