2,924 research outputs found
A Remote Laser Mass Spectrometer for Lunar Resource Assessment
The use of lasers as a source of excitation for surface mass spectroscopy has been investigated for some time. Since the laser can be focused to a small spot with intensity, it can vaporize and accelerate atoms of material. Using this phenomenon with a time-of-flight mass spectrometer allows a surface elemental mass analysis of a small region with each laser pulse. While the technique has been well developed for Earth applications, space applications are less developed. NASA Langley recently began a research program to investigate the use of a laser to create ions from the lunar surface and to analyze the ions at an orbiting spacecraft. A multijoule, Q-switched Nd:YAG laser would be focused to a small spot on the lunar surface, creating a dense plasma. This plasma would eject high-energy ions, as well as neutrals, electrons, and photons. An experiment is being set up to determine the characteristics of such a laser mass spectrometer at long flight distances. This experiment will determine the character of a future flight instrument for lunar resource assessment
Higher Education in Tajikistan: Institutional Landscape and Key Policy Developments
Higher education in Tajikistan has undergone substantial changes over the past 25 years as a result of both its internal crises and those social and economic transition challenges seen throughout the Newly Independent States (NIS). HEIs in the country have also shown eagerness to change and grow as they move toward world education space. In this chapter, we examine the evolution of the Tajik system of higher education from the Soviet time through independence (1991–2015) in terms of growth, emerging landscape and diversification, and key policy developments and issues. We analyze these changes in the context of relevant economic, social and political factors, and rely on a comparative analysis in understanding the commonalities and differences in higher educational landscapes between Tajikistan and others in the NIS. Institutional diversity has occurred in the country along several dimensions. Among these is a geometric expansion of the number of HEIs: Those transformed from preexisting Soviet institutes as well as the establishment of many new ones. This has been fueled partly by the mass creation of new programs that reflect the needs of an emerging knowledge-based economy but also the result of parental craving for higher education for their children—regardless of market demands. Specific features of the massification of higher education in Tajikistan are further explained by internationalization according to the Bologna Process and other globalization agendas; the establishment of international HEIs under bilateral government agreements (with Russia), and significantly increasing HEI programs and enrolments in far-flung regions of the country—especially in programs related to industry and technology. Our analyses are based on a variety of official statistical sources; educational laws, institutional documents and reports published by international organizations; accounts from the English-language press; and open-ended interviews conducted by the authors in Tajikistan between 2011 and 2014
The informational advantage of specialized monitors: the case of bank examiners
Large commercial banking firms are monitored by specialized private sector monitors and by specialized government examiners. Previous research suggests that bank exams produce little useful information that is not already reflected in market prices. In this article, we apply a new research methodology to a unique data set, and find that government exams of large national banks produce significant new information which financial markets do not fully internalize for several additional months. Our results indicate that specialized government monitors can identify value-relevant information about private firms, even if those firms are already actively followed by investors and their private-sector agents.Bank supervision ; Bank examination
Comparison of electrically driven lasers for space power transmission
High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength
A study of high-altitude manned research aircraft employing strut-braced wings of high-aspect-ratio
The effect of increased wing aspect ratio of subsonic aircraft on configurations with and without strut bracing. Results indicate that an optimum cantilever configuration, with a wing aspect ratio of approximately 26, has a 19% improvement in cruise range when compared to a baseline concept with a wing aspect ratio of approximately 10. An optimum strut braced configuration, with a wing aspect ratio of approximately 28, has a 31% improvment in cruise range when compared to the same baseline concept. This improvement is mainly due to the estimated reduction in wing weight resulting from use of lifting struts. All configurations assume the same mission payload and fuel. The drag characteristics of the wings are enhanced with the use of laminar flow airfoils. A method for determining the extent of attainable natural laminar flow, and methods for preliminary structural design and for aerodynamic analysis of wings lifting struts are presented
Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station
A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km
Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy
The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure
the free neutrons and heavy charged particles from the radioactive ion beam
induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the
Constrained Molecular Dynamics model(CoMD), which demonstrated that the
of the heavy fragments and free neutron multiplicities were observables
sensitive to the density dependence of the symmetry energy at sub-saturation
densities. Through comparison of these simulations with the experimental data
constraints on the density dependence of the symmetry energy were extracted.
The advantage of radioactive ion beams as a probe of the symmetry energy is
demonstrated through examination of CoMD calculations for stable and
radioactive beam induced reactions
Alcohol-Related Consequences Among First-Year University Students: Effectiveness of a Web-Based Personalized Feedback Program
This study evaluated the effectiveness of a web-based personalized feedback program using an objective measure of alcohol-related consequences. Participants were assigned to either the intervention group or an assessment-only control group during university orientation. Sanctions received for campus alcohol policy violations were tracked over the academic year. Results indicated high-risk drinkers in the control group received significantly more sanctions than other students. Results support the effectiveness of web-based interventions
Three-body correlations in the ground-state decay of 26O
Background: Theoretical calculations have shown that the energy and angular
correlations in the three-body decay of the two-neutron unbound O26 can provide
information on the ground-state wave function, which has been predicted to have
a dineutron configuration and 2n halo structure.
Purpose: To use the experimentally measured three-body correlations to gain
insight into the properties of O26, including the decay mechanism and
ground-state resonance energy.
Method: O26 was produced in a one-proton knockout reaction from F27 and the
O24+n+n decay products were measured using the MoNA-Sweeper setup. The
three-body correlations from the O26 ground-state resonance decay were
extracted. The experimental results were compared to Monte Carlo simulations in
which the resonance energy and decay mechanism were varied.
Results: The measured three-body correlations were well reproduced by the
Monte Carlo simulations but were not sensitive to the decay mechanism due to
the experimental resolutions. However, the three-body correlations were found
to be sensitive to the resonance energy of O26. A 1{\sigma} upper limit of 53
keV was extracted for the ground-state resonance energy of O26.
Conclusions: Future attempts to measure the three-body correlations from the
ground-state decay of O26 will be very challenging due to the need for a
precise measurement of the O24 momentum at the reaction point in the target
Search for unbound 15Be states in the 3n+12Be channel
15Be is expected to have low-lying 3/2+ and 5/2+ states. A first search did
not observe the 3/2+ [A. Spyrou et al., Phys. Rev. C 84, 044309 (2011)],
however, a resonance in 15Be was populated in a second attempt and determined
to be unbound with respect to 14Be by 1.8(1) MeV with a tentative spin-parity
assignment of 5/2+ [J. Snyder et al., Phys. Rev. C 88, 031303(R) (2013)].
Search for the predicted 15Be 3/2+ state in the three-neutron decay channel. A
two-proton removal reaction from a 55 MeV/u 17C beam was used to populate
neutron-unbound states in 15Be. The two-, three-, and four-body decay energies
of the 12Be + neutron(s) detected in coincidence were reconstructed using
invariant mass spectroscopy. Monte Carlo simulations were performed to extract
the resonance and decay properties from the observed spectra. The low-energy
regions of the decay energy spectra can be described with the first excited
unbound state of 14Be (E_x=1.54 MeV, E_r=0.28 MeV). Including a state in 15Be
that decays through the first excited 14Be state slightly improves the fit at
higher energies though the cross section is small. A 15Be component is not
needed to describe the data. If the 3/2+ state in 15Be is populated, the decay
by three-neutron emission through 14Be is weak, less than or equal to 11% up to
4 MeV. In the best fit, 15Be is unbound with respect to 12Be by 1.4 MeV
(unbound with respect to $14Be by 2.66 MeV) with a strength of 7%.Comment: 6 pages, 5 figures, accepted in Physical Review
- …