11 research outputs found

    Evidence for a common progenitor of epithelial and mesenchymal components of the liver

    Get PDF
    Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. The liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the liver fibrosis) in adult organ is yet unveiled. We show here that epithelial and mesenchymal liver cells (hepatocytes and HSCs) may arise from a common progenitor. Sca+ murine progenitor cells were found to coexpress markers of epithelial and mesenchymal lineages and to give rise, within few generations, to cells that segregate the lineage-specific markers into two distinct subpopulations. Notably, these progenitor cells, clonally derived, when transplanted in healthy livers, were found to generate epithelial and mesenchymal liver-specific derivatives (i.e. hepatocytes and HSCs) properly integrated in the liver architecture. These evidences suggest the existence of a 'bona fide' organ-specific meso-endodermal precursor cell, thus profoundly modifying current models of adult progenitor commitment believed, so far, to be lineage-restricted. Heterotopic transplantations, which confirm the dual differentiation potentiality of those cells, indicates as tissue local cues are necessary to drive a full hepatic differentiation. These data provide first evidences for an adult stem/precursor cell capable to differentiate in both parenchymal and non-parenchymal organ-specific components and candidate the liver as the instructive site for the reservoir compartment of HSC precursors as yet non-localized in the adult. \uc2\ua9 2013 Macmillan Publishers Limited All rights reserved

    Evidence for a common progenitor of epithelial and mesenchymal components of the liver

    Get PDF
    Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. The liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the liver fibrosis) in adult organ is yet unveiled. We show here that epithelial and mesenchymal liver cells (hepatocytes and HSCs) may arise from a common progenitor. Sca+ murine progenitor cells were found to coexpress markers of epithelial and mesenchymal lineages and to give rise, within few generations, to cells that segregate the lineage-specific markers into two distinct subpopulations. Notably, these progenitor cells, clonally derived, when transplanted in healthy livers, were found to generate epithelial and mesenchymal liver-specific derivatives (i.e. hepatocytes and HSCs) properly integrated in the liver architecture. These evidences suggest the existence of a 'bona fide' organ-specific meso-endodermal precursor cell, thus profoundly modifying current models of adult progenitor commitment believed, so far, to be lineage-restricted. Heterotopic transplantations, which confirm the dual differentiation potentiality of those cells, indicates as tissue local cues are necessary to drive a full hepatic differentiation. These data provide first evidences for an adult stem/precursor cell capable to differentiate in both parenchymal and non-parenchymal organ-specific components and candidate the liver as the instructive site for the reservoir compartment of HSC precursors as yet non-localized in the adult. © 2013 Macmillan Publishers Limited All rights reserved

    Accounting for co-authorship in research evaluation: the case of experimental physics in Italy

    No full text
    Co-authorship practices are known to differ among distinct scientific fields, but may do so even within research communities belonging to the same field. As a consequence, standard normalisation procedures may fail and not allow a correct comparison of individual scientific performance within a given field. For instance, in recent years groups of scientists in experimental physics, particularly in the high-energy sector, have started to work within projects involving very large research groups, sometimes comprising thousands of researchers, while other scientists operating in the same general field have continued to work within more traditional, smaller scientific collaborations: as a consequence, evaluating the scientific contribution of researchers in experimental physics has become particularly difficult, even if traditional field normalisation is taken into account. The aim of this paper is to investigate the relevance of this phenomenon and discuss a method to take into account co-authorship when evaluating scientist considering the case of the Italian National scientific Habilitation program as a case study

    Accounting for co-authorship in research evaluation: the case of experimental physics in Italy

    No full text
    Co-authorship practices are known to differ among distinct scientific fields, but may do so even within research communities belonging to the same field. As a consequence, standard normalisation procedures may fail and not allow a correct comparison of individual scientific performance within a given field. For instance, in recent years groups of scientists in experimental physics, particularly in the high-energy sector, have started to work within projects involving very large research groups, sometimes comprising thousands of researchers, while other scientists operating in the same general field have continued to work within more traditional, smaller scientific collaborations: as a consequence, evaluating the scientific contribution of researchers in experimental physics has become particularly difficult, even if traditional field normalisation is taken into account. The aim of this paper is to investigate the relevance of this phenomenon and discuss a method to take into account co-authorship when evaluating scientist considering the case of the Italian National scientific Habilitation program as a case study

    Impact of nucleic acid testing for hepatitis B virus, hepatitis C virus, and human immunodeficiency virus on the safety of blood supply in Italy: A 6-year survey

    No full text
    BACKGROUND: Nucleic acid testing (NAT) for hepatitis C virus (HCV) and human immunodeficiency virus (HIV) has been implemented in several European countries and in the United States, while hepatitis B virus (HBV) NAT is still being questioned by opinions both in favor and against such an option, depending on the HBV endemicity, health care resources, and expected benefits. STUDY DESIGN AND METHODS: This survey was aimed to assess the NAT impact in improving the safety of blood supply in Italy, 6 years after implementation. The study involved 93 Italian transfusion centers and was carried out in 2001 through 2006. A total of 10,776,288 units were tested for the presence of HCV RNA, 7,932,430 for HIV RNA, and 3,405,497 for HBV DNA, respectively. RESULTS: Twenty-seven donations or 2.5 per million tested were HCV RNA-positive/anti-HCV-negative; 14 or 1.8 per million units tested were HIV RNA-positive/anti-HIV-negative; and 197 or 57.8 per million donations tested were HBV DNA-positive/hepatitis B surface antigen-negative. Of the latter, 8 (2.3/10(6)) were collected from donors in the window phase of infection and 189 (55.5/10(6)) from donors with occult HBV. Sixty-eight percent of the latter donors had hepatitis B surface antibody, 74.5 percent of whom with concentrations considered protective (>= 10 mIU/mL). CONCLUSION: NAT implementation has improved blood safety by reducing the risk of entering 2.5 HCV and 1.8 HIV infectious units per million donations into the blood supply. The yield of NAT in detecting infectious blood before transfusion was higher for HBV than for HCV or HIV. However, the benefit of HBV NAT in terms of avoided HBV-related morbidity and mortality in blood recipients needs to be further evaluated
    corecore