22,603 research outputs found

    Variational Formulation for Quaternionic Quantum Mechanics

    Full text link
    A quaternionic version of Quantum Mechanics is constructed using the Schwinger's formulation based on measurements and a Variational Principle. Commutation relations and evolution equations are provided, and the results are compared with other formulations.Comment: Talk given at ICCA*, May 26-30 of 2008, Campinas, SP, Brazil. 18 pages, no figur

    Superfluid and insulating phases of fermion mixtures in optical lattices

    Full text link
    The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid/excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI/FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI/FPI phases exist in Bose-Fermi mixtures, and lastly the FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.Comment: 4 pages with 3 figures (Published version

    Magnetoresistive Effects in Ferromagnet-Superconductor Multilayers

    Full text link
    We consider a nanoscale system consisting of Manganite-ferromagnet and Cuprate-superconductor multilayers in a spin valve configuration. The magnetization of the bottom Manganite-ferromagnet is pinned by a Manganite-antiferromagnet. The magnetization of the top Manganite-ferromagnet is coupled to the bottom one via indirect exchange through the superconducting layers. We study the behavior of the critical temperature and the magnetoresistance as a function of an externally applied parallel magnetic field, when the number of Cuprate-superconductor layers are changed. There are two typical behaviors in the case of a few monolayers of the Cuprates: a) For small magnetic fields, the critical temperature and the magnetoresistance change abruptly when the flipping field of the top Manganite-ferromagnet is reached. b) For large magnetic fields, the multilayered system re-enters the zero-resistance (superconducting) state after having become resistive (normal).Comment: 3 pages, 3 figures. 2004 Magnetism and Magnetic Materials Conferenc
    • …
    corecore