8,775 research outputs found

    Coherent Storage of Temporally Multimode Light Using a Spin-Wave Atomic Frequency Comb Memory

    Full text link
    We report on coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr3+:Y2SiO5 to spin-waves in the hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of 5 temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light.Comment: 17 pages, 5 figure

    Angular dependence of core hole screening in LiCoO2: A DFT+U calculation of the oxygen and cobalt K-edge x-ray absorption spectra

    Full text link
    Angular dependent core-hole screening effects have been found in the cobalt K-edge x-ray absorption spectrum of LiCoO2, using high-resolution data and parameter-free GGA+U calculations. The Co 1s core-hole on the absorber causes strong local attraction. The core-hole screening on the nearest neighbours cobalt induces a 2 eV shift in the density of states with respect to the on-site 1s-3d transitions, as detected in the Co K pre-edge spectrum. Our DFT+U calculations reveal that the off-site screening is different in the out-of-plane direction, where a 3 eV shift is visible in both calculations and experiment. The detailed analysis of the inclusion of the core-hole potential and the Hubbard parameter U shows that the core-hole is essential for the off-site screening, while U improves the description of the angular dependent screening effects. In the case of oxygen K-edge, both the core-hole potential and the Hubbard parameter improve the relative positions of the spectral features

    Storage of up-converted telecom photons in a doped crystal

    Full text link
    We report on an experiment that demonstrates the frequency up-conversion of telecommunication wavelength single-photon-level pulses to be resonant with a Pr3+\mathrm{Pr}^{3+}:Y2SiO5\mathrm{Y}_2\mathrm{Si}\mathrm{O}_5 crystal. We convert the telecom photons at 1570 nm1570\,\mathrm{nm} to 606 nm606\,\mathrm{nm} using a periodically-poled potassium titanyl phosphate nonlinear waveguide. The maximum device efficiency (which includes all optical loss) is inferred to be ηdevmax=22±1 \eta_{\mathrm{dev}}^{\mathrm{max}} = 22 \pm 1\,% (internal efficiency ηint=75±8 \eta_{\mathrm{int}} = 75\pm8\,%) with a signal to noise ratio exceeding 1 for single-photon-level pulses with durations of up to 560 \,ns. The converted light is then stored in the crystal using the atomic frequency comb scheme with storage and retrieval efficiencies exceeding ηAFC=20 \eta_{\mathrm{AFC}} = 20\,% for predetermined storage times of up to 5 μs5\,\mu\mathrm{s}. The retrieved light is time delayed from the noisy conversion process allowing us to measure a signal to noise ratio exceeding 100 with telecom single-photon-level inputs. These results represent the first demonstration of single-photon-level optical storage interfaced with frequency up-conversion

    Quaterpyridine Ligands for Panchromatic Ru(II) Dye Sensitizers

    Get PDF
    A new general synthetic access to carboxylated quaterpyridines (qpy), of interest as ligands for panchromatic dyesensitized solar cell organometallic sensitizers, is presented. The strategic step is a Suzuki−Miyaura cross-coupling reaction, which has allowed the preparation of a number of representative unsubstituted and alkyl and (hetero)aromatic substituted qpys. To bypass the poor inherent stability of 2-pyridylboronic acid derivatives, we successfully applied N-methyliminodiacetic acid (MIDA) boronates as key reagents, obtaining the qpy ligands in good yields up to (quasi)gram quantities. The structural, spectroscopic (NMR and UV−vis), electrochemical, and electronic characteristics of the qpy have been experimentally and computationally (DFT) investigated. The easy access to the bis-thiocyanato Ru(II) complex of the parent species of the qpy series, through an efficient route which bypasses the use of Sephadex column chromatography, is shown. The bis-thiocyanato Ru(II) complex has been spectroscopically (NMR and UV−vis), electrochemically, and computationally investigated, relating its properties to those of previously reported Ru(II)−qpy complexes.“This document is the Accepted Manuscript version of a Published Work that appeared in final form in [The Journal of Organic Chemistry], copyright © American Chemical Society after peer review and technical editing by the publisher

    On the High-dimensional Bak-Sneppen model

    Full text link
    We report on extensive numerical simulations on the Bak-Sneppen model in high dimensions. We uncover a very rich behavior as a function of dimensionality. For d>2 the avalanche cluster becomes fractal and for d \ge 4 the process becomes transient. Finally the exponents reach their mean field values for d=d_c=8, which is then the upper critical dimension of the Bak Sneppen model.Comment: 4 pages, 3 eps figure

    Finite dimensional corrections to mean field in a short-range p-spin glassy model

    Full text link
    In this work we discuss a short range version of the pp-spin model. The model is provided with a parameter that allows to control the crossover with the mean field behaviour. We detect a discrepancy between the perturbative approach and numerical simulation. We attribute it to non-perturbative effects due to the finite probability that each particular realization of the disorder allows for the formation of regions where the system is less frustrated and locally freezes at a higher temperature.Comment: 18 pages, 5 figures, submitted to Phys Rev

    Critical exponents of the anisotropic Bak-Sneppen model

    Full text link
    We analyze the behavior of spatially anisotropic Bak-Sneppen model. We demonstrate that a nontrivial relation between critical exponents tau and mu=d/D, recently derived for the isotropic Bak-Sneppen model, holds for its anisotropic version as well. For one-dimensional anisotropic Bak-Sneppen model we derive a novel exact equation for the distribution of avalanche spatial sizes, and extract the value gamma=2 for one of the critical exponents of the model. Other critical exponents are then determined from previously known exponent relations. Our results are in excellent agreement with Monte Carlo simulations of the model as well as with direct numerical integration of the new equation.Comment: 8 pages, three figures included with psfig, some rewriting, + extra figure and table of exponent
    • …
    corecore