24 research outputs found
Catalyst Support Effect on the Activity and Durability of Magnetic Nanoparticles
Earth-abundant element-based inorganic-organic hybrid materials are attractive alternatives for electrocatalyzing energy conversion reactions. Such material structures do not only increase the surface area and stability of metal nanoparticles (NPs) but also modify the electrocatalytic performance. Here, we introduce, for the first time, multiwall carbon nanotubes (MWNTs) functionalized with nitrogen-rich emeraldine salt (ES) (denoted as ES-MWNT) as a promising catalyst support to boost the electrocatalytic activity of magnetic maghemite (γ-Fe2O3) NPs. The latter component has been synthesized by a simple and upscalable one-step pulsed laser ablation method on Ni core forming the core-shell Niγ-Fe2O3 NPs. The catalyst (Niγ-Fe2O3/ES-MWNT) is formed via self-assembly as strong interaction between ES-MWNT and Niγ-Fe2O3 results in NPs' encapsulation in a thin C-N shell. We further show that Ni does not directly function as an active site in the electrocatalyst but it has a crucial role in synthesizing the maghemite shell. The strong interaction between the NPs and the support improves notably the NPs' catalytic activity toward oxygen evolution reaction (OER) in terms of both onset potential and current density, ranking it among the most active catalysts reported so far. Furthermore, this material shows a superior durability to most of the current excellent OER electrocatalysts as the activity, and the structure, remains almost intact after 5000 OER stability cycles. On further characterization, the same trend has been observed for hydrogen evolution reaction, the other half-reaction of water splitting.Peer reviewe
Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction
Among
current technologies for hydrogen production as an environmentally
friendly fuel, water splitting has attracted increasing attention.
However, the efficiency of water electrolysis is severely limited
by the large anodic overpotential and sluggish reaction rate of the
oxygen evolution reaction (OER). To overcome this issue, the development
of efficient electrocatalyst materials for the OER has drawn much
attention. Here, we show that organometallic Ni(II) complexes immobilized
on the sidewalls of multiwalled carbon nanotubes (MWNTs) serve as
highly active and stable OER electrocatalysts. This class of electrocatalyst
materials is synthesized by covalent functionalization of the MWNTs
with organometallic Ni bipyridine (bipy) complexes. The Ni-bipy-MWNT
catalyst generates a current density of 10 mA cm<sup>–2</sup> at overpotentials of 310 and 290 mV in 0.1 and 1 M NaOH, respectively,
with a low Tafel slope of ∼35 mV dec<sup>–1</sup>, placing
the material among the most active OER electrocatalysts reported so
far. Different simple analysis techniques have been developed in this
study to characterize such a class of electrocatalyst materials. Furthermore,
density functional theory calculations have been performed to predict
the stable coordination complexes of Ni before and after OER measurements