10,046 research outputs found

    Collisional redistribution of light in the Mercury-Krypton system

    Get PDF
    Imperial Users onl

    Twisted equivariant K-theory, groupoids and proper actions

    Full text link
    In this paper we define twisted equivariant K-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid, this defines a periodic cohomology theory on the category of finite CW-complexes with equivariant stable projective bundles. A classification of these bundles is shown. We also obtain a completion theorem and apply these results to proper actions of groups.Comment: 26 page

    Double wells, scalar fields and quantum phase transitions in ions traps

    Full text link
    Since Hund's work on the ammonia molecule, the double well potential has formed a key paradigm in physics. Its importance is further underlined by the central role it plays in the Landau theory of phase transitions. Recently, the study of entanglement properties of many-body systems has added a new angle to the study of quantum phase transitions of discrete and continuous degrees of freedom, i.e., spin and harmonic chains. Here we show that control of the radial degree of freedom of trapped ion chains allows for the simulation of linear and non-linear Klein-Gordon fields on a lattice, in which the parameters of the lattice, the non-linearity and mass can be controlled at will. The system may be driven through a phase transition creating a double well potential between different configurations of the ion crystal. The dynamics of the system are controllable, local properties are measurable and tunnelling in the double well potential would be observable.Comment: 6 pages, 5 figure

    QED in external fields from the spin representation

    Full text link
    Systematic use of the infinite-dimensional spin representation simplifies and rigorizes several questions in Quantum Field Theory. This representation permutes ``Gaussian'' elements in the fermion Fock space, and is necessarily projective: we compute its cocycle at the group level, and obtain Schwinger terms and anomalies from infinitesimal versions of this cocycle. Quantization, in this framework, depends on the choice of the ``right'' complex structure on the space of solutions of the Dirac equation. We show how the spin representation allows one to compute exactly the S-matrix for fermions in an external field; the cocycle yields a causality condition needed to determine the phase.Comment: 32 pages, Plain TeX, UCR-FM-01-9

    Novel designs for Penning ion traps

    Get PDF
    We present a number of alternative designs for Penning ion traps suitable for quantum information processing (QIP) applications with atomic ions. The first trap design is a simple array of long straight wires which allows easy optical access. A prototype of this trap has been built to trap Ca+ and a simple electronic detection scheme has been employed to demonstrate the operation of the trap. Another trap design consists of a conducting plate with a hole in it situated above a continuous conducting plane. The final trap design is based on an array of pad electrodes. Although this trap design lacks the open geometry of the traps described above, the pad design may prove useful in a hybrid scheme in which information processing and qubit storage take place in different types of trap. The behaviour of the pad traps is simulated numerically and techniques for moving ions rapidly between traps are discussed. Future experiments with these various designs are discussed. All of the designs lend themselves to the construction of multiple trap arrays, as required for scalable ion trap QIP.Comment: 11 pages, 10 figure

    Doppler-free laser spectroscopy of buffer gas cooled molecular radicals

    Full text link
    We demonstrate Doppler-free saturated absorption spectroscopy of cold molecular radicals formed by laser ablation inside a cryogenic buffer gas cell. By lowering the temperature, congested regions of the spectrum can be simplified, and by using different temperatures for different regions of the spectrum a wide range of rotational states can be studied optimally. We use the technique to study the optical spectrum of YbF radicals with a resolution of 30 MHz, measuring the magnetic hyperfine parameters of the electronic ground state. The method is suitable for high resolution spectroscopy of a great variety of molecules at controlled temperature and pressure, and is particularly well-suited to those that are difficult to produce in the gas phase.Comment: 11 pages, 4 figure

    Hammerhead, an ultrahigh resolution ePix camera for wavelength-dispersive spectrometers

    Full text link
    Wavelength-dispersive spectrometers (WDS) are often used in synchrotron and FEL applications where high energy resolution (in the order of eV) is important. Increasing WDS energy resolution requires increasing spatial resolution of the detectors in the dispersion direction. The common approaches with strip detectors or small pixel detectors are not ideal. We present a novel approach, with a sensor using rectangular pixels with a high aspect ratio (between strips and pixels, further called "strixels"), and strixel redistribution to match the square pixel arrays of typical ASICs while avoiding the considerable effort of redesigning ASICs. This results in a sensor area of 17.4 mm x 77 mm, with a fine pitch of 25 ÎŒ\mum in the horizontal direction resulting in 3072 columns and 176 rows. The sensors use ePix100 readout ASICs, leveraging their low noise (43 e−^-, or 180 eV rms). We present results obtained with a Hammerhead ePix100 camera, showing that the small pitch (25 ÎŒ\mum) in the dispersion direction maximizes performance for both high and low photon occupancies, resulting in optimal WDS energy resolution. The low noise level at high photon occupancy allows precise photon counting, while at low occupancy, both the energy and the subpixel position can be reconstructed for every photon, allowing an ultrahigh resolution (in the order of 1 ÎŒ\mum) in the dispersion direction and rejection of scattered beam and harmonics. Using strixel sensors with redistribution and flip-chip bonding to standard ePix readout ASICs results in ultrahigh position resolution (∌\sim1 ÎŒ\mum) and low noise in WDS applications, leveraging the advantages of hybrid pixel detectors (high production yield, good availability, relatively inexpensive) while minimizing development complexity through sharing the ASIC, hardware, software and DAQ development with existing versions of ePix cameras.Comment: 8 pages, 6 figure
    • 

    corecore