5,450 research outputs found

    On the Hilbert scheme of curves in higher-dimensional projective space

    Full text link
    In this paper we prove that, for any n3n\ge 3, there exist infinitely many rNr\in \N and for each of them a smooth, connected curve CrC_r in r\P^r such that CrC_r lies on exactly nn irreducible components of the Hilbert scheme \hilb(\P^r). This is proven by reducing the problem to an analogous statement for the moduli of surfaces of general type.Comment: latex, 12 pages, no figure

    Geodesic Completeness for Sobolev Metrics on the Space of Immersed Plane Curves

    Get PDF
    We study properties of Sobolev-type metrics on the space of immersed plane curves. We show that the geodesic equation for Sobolev-type metrics with constant coefficients of order 2 and higher is globally well-posed for smooth initial data as well as initial data in certain Sobolev spaces. Thus the space of closed plane curves equipped with such a metric is geodesically complete. We find lower bounds for the geodesic distance in terms of curvature and its derivatives

    Ultradiscretization of the solution of periodic Toda equation

    Full text link
    A periodic box-ball system (pBBS) is obtained by ultradiscretizing the periodic discrete Toda equation (pd Toda eq.). We show the relation between a Young diagram of the pBBS and a spectral curve of the pd Toda eq.. The formula for the fundamental cycle of the pBBS is obtained as a colloraly.Comment: 41 pages; 7 figure

    Notes on Euclidean Wilson loops and Riemann Theta functions

    Full text link
    The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal area surfaces in AdS5 space. In this paper we consider the case of Euclidean flat Wilson loops which are related to minimal area surfaces in Euclidean AdS3 space. Using known mathematical results for such minimal area surfaces we describe an infinite parameter family of analytic solutions for closed Wilson loops. The solutions are given in terms of Riemann theta functions and the validity of the equations of motion is proven based on the trisecant identity. The world-sheet has the topology of a disk and the renormalized area is written as a finite, one-dimensional contour integral over the world-sheet boundary. An example is discussed in detail with plots of the corresponding surfaces. Further, for each Wilson loops we explicitly construct a one parameter family of deformations that preserve the area. The parameter is the so called spectral parameter. Finally, for genus three we find a map between these Wilson loops and closed curves inside the Riemann surface.Comment: 35 pages, 7 figures, pdflatex. V2: References added. Typos corrected. Some points clarifie

    Alternating groups and moduli space lifting Invariants

    Full text link
    Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves Fried-Serre on deciding when sphere covers with odd-order branching lift to unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp. odd) theta functions when r is even (resp. odd). For inner spaces the result is independent of r. Another use appears in, http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for the prime p=2 lying over Hurwitz spaces first studied by, http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*) High tower levels are general-type varieties and have no rational points.For infinitely many of those MTs, the tree of cusps contains a subtree -- a spire -- isomorphic to the tree of cusps on a modular curve tower. This makes plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs. Establishing these modular curve-like properties opens, to MTs, modular curve-like thinking where modular curves have never gone before. A fuller html description of this paper is at http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from proof sheets, but does include some proof simplification in \S

    On a new compactification of moduli of vector bundles on a surface, IV: Nonreduced moduli

    Full text link
    The construction for nonreduced projective moduli scheme of semistable admissible pairs is performed. We establish the relation of this moduli scheme with reduced moduli scheme built up in the previous article and prove that nonreduced moduli scheme contains an open subscheme which is isomorphic to moduli scheme of semistable vector bundles.Comment: 20 pages, additions and removal

    Singular projective varieties and quantization

    Full text link
    By the quantization condition compact quantizable Kaehler manifolds can be embedded into projective space. In this way they become projective varieties. The quantum Hilbert space of the Berezin-Toeplitz quantization (and of the geometric quantization) is the projective coordinate ring of the embedded manifold. This allows for generalization to the case of singular varieties. The set-up is explained in the first part of the contribution. The second part of the contribution is of tutorial nature. Necessary notions, concepts, and results of algebraic geometry appearing in this approach to quantization are explained. In particular, the notions of projective varieties, embeddings, singularities, and quotients appearing in geometric invariant theory are recalled.Comment: 21 pages, 3 figure

    Semiclassical Strings in AdS_5 x S^5 and Automorphic Functions

    Full text link
    Using AdS/CFT we derive from the folded spinning string ordinary differential equations for the anomalous dimension of the dual N=4 SYM twist-two operators at strong coupling. We show that for large spin the asymptotic solutions have the Gribov-Lipatov recirocity property. To obtain this result we use a hidden modular invariance of the energy-spin relation of the folded spinning string. Further we identify the Moch-Vermaseren-Vogt (MVV) relations, which were first recognized in plain QCD calculations, as the recurrence relations of the asymptotic series ansatz.Comment: 4 page

    One-loop Yukawas on Intersecting Branes

    Full text link
    We calculate Yukawa interactions at one-loop on intersecting D6 branes. We demonstrate the non-renormalization theorem in supersymmetric configurations, and show how Yukawa beta functions may be extracted. In addition to the usual logarithmic running, we find the power-law dependence on the infra-red cut-off associated with Kaluza-Klein modes. Our results may also be used to evaluate coupling renormalization in non-supersymmetric cases.Comment: 48 pages, 9 figures; minor corrections, JHEP styl

    A functorial construction of moduli of sheaves

    Full text link
    We show how natural functors from the category of coherent sheaves on a projective scheme to categories of Kronecker modules can be used to construct moduli spaces of semistable sheaves. This construction simplifies or clarifies technical aspects of existing constructions and yields new simpler definitions of theta functions, about which more complete results can be proved.Comment: 52 pp. Dedicated to the memory of Joseph Le Potier. To appear in Inventiones Mathematicae. Slight change in the definition of the Kronecker algebra in Secs 1 (p3) and 2.2 (p6), with corresponding small alterations elsewhere, to make the constructions work for non-reduced schemes. Section 6.5 rewritten. Remark 2.6 and new references adde
    corecore