5,450 research outputs found
On the Hilbert scheme of curves in higher-dimensional projective space
In this paper we prove that, for any , there exist infinitely many
and for each of them a smooth, connected curve in such
that lies on exactly irreducible components of the Hilbert scheme
\hilb(\P^r). This is proven by reducing the problem to an analogous statement
for the moduli of surfaces of general type.Comment: latex, 12 pages, no figure
Geodesic Completeness for Sobolev Metrics on the Space of Immersed Plane Curves
We study properties of Sobolev-type metrics on the space of immersed plane curves. We show that the geodesic equation for Sobolev-type metrics with constant coefficients of order 2 and higher is globally well-posed for smooth initial data as well as initial data in certain Sobolev spaces. Thus the space of closed plane curves equipped with such a metric is geodesically complete. We find lower bounds for the geodesic distance in terms of curvature and its derivatives
Ultradiscretization of the solution of periodic Toda equation
A periodic box-ball system (pBBS) is obtained by ultradiscretizing the
periodic discrete Toda equation (pd Toda eq.). We show the relation between a
Young diagram of the pBBS and a spectral curve of the pd Toda eq.. The formula
for the fundamental cycle of the pBBS is obtained as a colloraly.Comment: 41 pages; 7 figure
Notes on Euclidean Wilson loops and Riemann Theta functions
The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal
area surfaces in AdS5 space. In this paper we consider the case of Euclidean
flat Wilson loops which are related to minimal area surfaces in Euclidean AdS3
space. Using known mathematical results for such minimal area surfaces we
describe an infinite parameter family of analytic solutions for closed Wilson
loops. The solutions are given in terms of Riemann theta functions and the
validity of the equations of motion is proven based on the trisecant identity.
The world-sheet has the topology of a disk and the renormalized area is written
as a finite, one-dimensional contour integral over the world-sheet boundary. An
example is discussed in detail with plots of the corresponding surfaces.
Further, for each Wilson loops we explicitly construct a one parameter family
of deformations that preserve the area. The parameter is the so called spectral
parameter. Finally, for genus three we find a map between these Wilson loops
and closed curves inside the Riemann surface.Comment: 35 pages, 7 figures, pdflatex. V2: References added. Typos corrected.
Some points clarifie
Alternating groups and moduli space lifting Invariants
Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of
degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves
Fried-Serre on deciding when sphere covers with odd-order branching lift to
unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on
Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces
of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp.
odd) theta functions when r is even (resp. odd). For inner spaces the result is
independent of r. Another use appears in,
http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of
families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for
the prime p=2 lying over Hurwitz spaces first studied by,
http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and
Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*)
High tower levels are general-type varieties and have no rational points.For
infinitely many of those MTs, the tree of cusps contains a subtree -- a spire
-- isomorphic to the tree of cusps on a modular curve tower. This makes
plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs.
Establishing these modular curve-like properties opens, to MTs, modular
curve-like thinking where modular curves have never gone before. A fuller html
description of this paper is at
http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from
proof sheets, but does include some proof simplification in \S
On a new compactification of moduli of vector bundles on a surface, IV: Nonreduced moduli
The construction for nonreduced projective moduli scheme of semistable
admissible pairs is performed. We establish the relation of this moduli scheme
with reduced moduli scheme built up in the previous article and prove that
nonreduced moduli scheme contains an open subscheme which is isomorphic to
moduli scheme of semistable vector bundles.Comment: 20 pages, additions and removal
Singular projective varieties and quantization
By the quantization condition compact quantizable Kaehler manifolds can be
embedded into projective space. In this way they become projective varieties.
The quantum Hilbert space of the Berezin-Toeplitz quantization (and of the
geometric quantization) is the projective coordinate ring of the embedded
manifold. This allows for generalization to the case of singular varieties. The
set-up is explained in the first part of the contribution. The second part of
the contribution is of tutorial nature. Necessary notions, concepts, and
results of algebraic geometry appearing in this approach to quantization are
explained. In particular, the notions of projective varieties, embeddings,
singularities, and quotients appearing in geometric invariant theory are
recalled.Comment: 21 pages, 3 figure
Semiclassical Strings in AdS_5 x S^5 and Automorphic Functions
Using AdS/CFT we derive from the folded spinning string ordinary differential
equations for the anomalous dimension of the dual N=4 SYM twist-two operators
at strong coupling. We show that for large spin the asymptotic solutions have
the Gribov-Lipatov recirocity property. To obtain this result we use a hidden
modular invariance of the energy-spin relation of the folded spinning string.
Further we identify the Moch-Vermaseren-Vogt (MVV) relations, which were first
recognized in plain QCD calculations, as the recurrence relations of the
asymptotic series ansatz.Comment: 4 page
One-loop Yukawas on Intersecting Branes
We calculate Yukawa interactions at one-loop on intersecting D6 branes. We
demonstrate the non-renormalization theorem in supersymmetric configurations,
and show how Yukawa beta functions may be extracted. In addition to the usual
logarithmic running, we find the power-law dependence on the infra-red cut-off
associated with Kaluza-Klein modes. Our results may also be used to evaluate
coupling renormalization in non-supersymmetric cases.Comment: 48 pages, 9 figures; minor corrections, JHEP styl
A functorial construction of moduli of sheaves
We show how natural functors from the category of coherent sheaves on a
projective scheme to categories of Kronecker modules can be used to construct
moduli spaces of semistable sheaves. This construction simplifies or clarifies
technical aspects of existing constructions and yields new simpler definitions
of theta functions, about which more complete results can be proved.Comment: 52 pp. Dedicated to the memory of Joseph Le Potier. To appear in
Inventiones Mathematicae. Slight change in the definition of the Kronecker
algebra in Secs 1 (p3) and 2.2 (p6), with corresponding small alterations
elsewhere, to make the constructions work for non-reduced schemes. Section
6.5 rewritten. Remark 2.6 and new references adde
- …
