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Abstract

We study properties of Sobolev-type metrics on the space of immersed plane curves. We show that
the geodesic equation for Sobolev-type metrics with constant coefficients of order 2 and higher is
globally well-posed for smooth initial data as well as initial data in certain Sobolev spaces. Thus
the space of closed plane curves equipped with such a metric is geodesically complete. We find
lower bounds for the geodesic distance in terms of curvature and its derivatives.

2010 Mathematics Subject Classification: 58D15 (primary); 35G55, 53A04, 58B20 (secondary)

1. Introduction

Sobolev-type metrics on the space of plane immersed curves were independently
introduced in [7, 17, 24]. They are used in computer vision, shape classification
and tracking, mainly in the form of their induced metric on shape space, which
is the orbit space under the action of the reparameterization group. See [14,
23] for applications of Sobolev-type metrics and [2, 18] for an overview of
their mathematical properties. Sobolev-type metrics were also generalized to
immersions of higher dimensional manifolds in [4, 5].
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It was shown in [18] that the geodesic equation of a Sobolev-type metric of
order n ≥ 1 is locally well-posed and this result was extended in [4] to a larger
class of metrics and immersions of arbitrary dimension. The main result of this
paper is to show global well-posedness of the geodesic equation for Sobolev-
type metrics of order n ≥ 2 with constant coefficients. In particular we prove the
following theorem:

Theorem 1.1. Let n ≥ 2 and the metric G on Imm(S 1,R2) be given by

Gc(h, k) =

∫
S 1

n∑
j=0

a j〈D
j
sh,D

j
sk〉 ds ,

with a j ≥ 0 and a0, an , 0. Given initial conditions (c0, u0) ∈ T Imm(S 1,R2) the
solution of the geodesic equation

∂t

 n∑
j=0

(−1) j |c′|D2 j
s ct

 = −
a0

2
|c′|Ds (〈ct, ct〉v)

+

n∑
k=1

2k−1∑
j=1

(−1)k+ j ak

2
|c′|Ds

(
〈D2k− j

s ct,D
j
sct〉v

)
.

for the metric G with initial values (c0, u0) exists for all time.

Here Imm(S 1,R2) denotes the space of all smooth, closed, plane curves with
nowhere zero tangent vectors; this space is open in C∞(S 1,R2). We assume that
c ∈ Imm(S 1,R2) and h, k are vector fields along c, ds = |c′| dθ is the arc-length
measure, Ds = 1

|c′ |∂θ is the derivative with respect to arc-length, v = c′/|c′| is the
unit length tangent vector to c and 〈 , 〉 is the Euclidean inner product on R2.

Thus if G is a Sobolev-type metric of order at least 2, then the Riemannian
manifold (Imm(S 1,R2),G) is geodesically complete. If the Sobolev-type metric
is invariant under the reparameterization group Diff(S 1), also the induced metric
on shape space Imm(S 1,R2)/Diff(S 1) is geodesically complete. The latter space
is an infinite dimensional orbifold; see [17, 2.5 and 2.10].

Theorem 1.1 seems to be the first result about geodesic completeness on man-
ifolds of mappings outside the realm of diffeomorphism groups and manifolds of
metrics. In the first paragraph of [9, p. 140] a proof is sketched that a right invari-
ant Hs-metric on the group of volume preserving diffeomorphisms on a compact
manifold M is geodesically complete, if s ≥ dim(M)/2 + 1. In [25] there is an
implicit result that a topological group of diffeomorphisms constructed from a
reproducing kernel Hilbert space of vector fields whose reproducing kernel is at
least C1, is geodesically complete. For a certain metric on a group of diffeomor-
phisms on Rn with C1 kernel geodesic completeness is shown in [19, Thm. 2].
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Metric completeness and existence of minimizing geodesics have also been stud-
ied on the diffeomorphism group in [6]. The manifold of all Riemannian metrics
with fixed volume form is geodesically complete for the L2-metric (also called
the Ebin metric).

Sobolev-type metrics of order 1 are not geodesically complete, since it is
possible to shrink a circle to a point along a geodesic in finite time, see [18,
Sect. 6.1]. Similarly a Sobolev metric of order 2 or higher with both a0, a1 = 0 is
a geodesically incomplete metric on the space Imm(S 1,R2)/Tra of plane curves
modulo translations. In this case it is possible to blow up a circle along a geodesic
to infinity in finite time; see Rem. 5.7.

In order to prove long-time existence of geodesics, we need to study prop-
erties of the geodesic distance. In particular we show the following theorem
regarding continuity of curvature κ and its derivatives.

Theorem 1.2. Let G be a Sobolev-type metric of order n ≥ 2 with constant
coefficients and distG the induced geodesic distance. If 0 ≤ k ≤ n − 2, then the
functions

Dk
s(κ)

√
|c′| : (Imm(S 1,R2), distG)→ L2(S 1,R)

Dk+1
s (log |c′|)

√
|c′| : (Imm(S 1,R2), distG)→ L2(S 1,R)

are continuous and Lipschitz continuous on every metric ball.

A similar statement can be derived for the L∞-continuity of curvature and its
derivatives; see Rem. 4.9.

The full proof of Thm. 1.1 is surprisingly complicated. One reason is that
we have to work on the Sobolev completion (always with respect to the original
parameter θ in S 1) of the space of immersions in order to apply results on ODEs
on Banach spaces. Here the operators (and their inverses and adjoints) acquire
non-smooth coefficients. Since we we want the Sobolev order as low as possible,
the geodesic equation involves H−n; see Sect. 3.3. Eventually we use that the
metric operator has constant coefficients. We have to use estimates with precise
constants which are uniformly bounded on metric balls.

In [4] the authors studied Sobolev metrics on immersions of higher dimen-
sional manifolds. One might hope that similar methods to those used in this arti-
cle can be applied to show the geodesic completeness of the spaces Imm(M,N)
with M compact and (N, ḡ) a suitable Riemannian manifold. A crucial ingredient
in the proof for plane curves are the Sobolev inequalities Lem. 2.14 and Lem.
2.15 with explicit constants, which only depend on the curve through the length.
The lack of such inequalities for general M will one of the factors complicating
life in higher dimensions.



M. Bruveris, P.W. Michor and D. Mumford 4

2. Background Material and Notation

2.1. The Space of Curves The space

Imm(S 1,R2) =
{
c ∈ C∞(S 1,R2) : c′(θ) , 0

}
of immersions is an open set in the Fréchet space C∞(S 1,R2) with respect to the
C∞-topology and thus itself a smooth Fréchet manifold. The tangent space of
Imm(S 1,R2) at the point c consists of all vector fields along the curve c. It can
be described as the space of sections of the pullback bundle c∗TR2,

Tc Imm(S 1,R2) = Γ(c∗TR2) =

h :

TR2

π
��

S 1 c //

h
==

R2

 .

In our case, since the tangent bundle TR2 is trivial, it can also be identified with
the space of R2-valued functions on S 1,

Tc Imm(S 1,R2) � C∞(S 1,R2) .

For a curve c ∈ Imm(S 1,R2) we denote the parameter by θ ∈ S 1 and
differentiation ∂θ by ′, i.e., c′ = ∂θc. Since c is an immersion, the unit-length
tangent vector v = c′/|c′| is well-defined. Rotating v by π

2 we obtain the unit-
length normal vector n = Jv, where J is rotation by π

2 . We will denote by
Ds = ∂θ/|cθ| the derivative with respect to arc-length and by ds = |cθ| dθ the
integration with respect to arc-length. To summarize we have

v = Dsc , n = Jv , Ds =
1
|cθ|

∂θ , ds = |cθ| dθ .

The curvature can be defined as

κ = 〈Dsv, n〉

and we have the Frenet-equations

Dsv = κn

Dsn = −κv .

The length of a curve will be denoted by `c =
∫

S 1 1 ds. We define the turning
angle α : S 1 → R/2πZ of a curve c by v(θ) = (cosα(θ), sinα(θ)). Then curvature
is given by κ = Dsα.
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2.2. Variational Formulae We will need formulas that express, how the quan-
tities v, n and κ change, if we vary the underlying curve c. For a smooth map F
from Imm(S 1,R2) to any convenient vector space (see [13]) we denote by

Dc,hF =
d
dt

∣∣∣∣∣
t=0

F(c + th)

the variation in the direction h.
The proof of the following formulas can be found for example in [18].

Dc,hv = 〈Dsh, n〉n =⇒ Dc,hα = 〈Dsh, n〉
Dc,hn = −〈Dsh, n〉v

Dc,hκ = 〈D2
sh, n〉 − 2κ〈Dsh, v〉

Dc,h

(
|c′|k

)
= k 〈Dsh, v〉 |c′|k .

With these basic building blocks, one can use the following lemma to compute
the variations of higher derivatives.

Lemma 2.3. If F is a smooth map F : Imm(S 1,R2) → C∞(S 1,Rd), then the
variation of the composition Ds ◦ F is given by

Dc,h (Ds ◦ F) = Ds
(
Dc,hF

)
− 〈Dsh, v〉DsF(c) .

Proof. The operator ∂θ is linear and thus commutes with the derivative with
respect to c. Thus we have

Dc,h (Ds ◦ F) = Dc,h

(
|c′|−1∂θF(c)

)
= |c′|−1∂θ

(
Dc,hF

)
+

(
Dc,h |c′|−1

)
∂θF(c)

= Ds
(
Dc,hF

)
− 〈Dsh, v〉 |c′|−1∂θF(c)

= Ds
(
Dc,hF

)
− 〈Dsh, v〉DsF(c) .

2.4. Sobolev Norms In this paper we will only consider Sobolev spaces of
integer order. For n ≥ 1 the Hn(dθ)-norm on C∞(S 1,Rd) is given by

‖u‖2Hn(dθ) =

∫
S 1
|u|2 + |∂n

θu|
2 dθ . (1)

Given c ∈ Imm(S 1,R2), we define the Hn(ds)-norm on C∞(S 1,Rd) by

‖u‖2Hn(ds) =

∫
S 1
|u(s)|2 + |Dn

su(s)|2 ds . (2)

Note that in (2) integration and differentiation are performed with respect to the
arc-length of c, while in (1) the parameter θ is used. In particular the Hn(ds)-
norm depends on the curve c. The norms Hn(dθ) and Hn(ds) are equivalent, but
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the constants do depend on c. We prove in Lem. 5.1, that if c doesn’t vary too
much, the constants can be chosen independently of c.

The L2(dθ)- and L2(ds)-norms are defined similarly,

‖u‖2L2(dθ) =

∫
S 1
|u|2 dθ , ‖u‖2L2(ds) =

∫
S 1
|u|2 ds ,

and they are related via
∥∥∥u
√
|c′|

∥∥∥
L2(dθ) = ‖u‖L2(ds). Whenever we write Hn(S 1,Rd)

or L2(S 1,Rd), we always endow them with the Hn(dθ)- and L2(dθ)-norms.
For n ≥ 2 we shall denote by

Immn(S 1,R2) = {c : c ∈ Hn(S 1,R2), c′(θ) , 0}

the space of Sobolev immersions of order n. Because of the Sobolev embedding
theorem, see [1], we have H2(S 1,R2) ↪→ C1(S 1,R2) and thus Immn(S 1,R2) is
well-defined. We will see in Sect. 3.2 that the Hn(ds)-norm remains well-defined
if c ∈ Immn(S 1,R2).

The following result on point-wise multiplication will be used repeatedly. It
can be found, among other places in [11, Lem. 2.3]. We will in particular use
that k can be negative.

Lemma 2.5. Let n ≥ 1 and k ∈ Z with |k| ≤ n Then multiplication is a bounded
bilinear map

· : Hn(S 1,Rd) × Hk(S 1,Rd)→ Hk(S 1,R) , ( f , g) 7→ 〈 f , g〉

The last tool, that we will need is composition of Sobolev diffeomorphisms.
For n ≥ 1, define

Dn(S 1) = {ϕ : ϕ is C1-diffeomorphism of S 1 and ϕ ∈ Hn(S 1, S 1)}

the group of Sobolev diffeomorphisms. The following lemma can be found in
[11, Thm. 1.2].

Lemma 2.6. Let n ≥ 2 and 0 ≤ k ≤ n. Then the composition map

Hk(S 1,Rd) ×Dn(S 1)→ Hk(S 1,Rd) , ( f , ϕ) 7→ f ◦ ϕ

is continuous.

Let n ≥ 2 and fix ϕ ∈ Dn(S 1). Denote by Rϕ(h) = h ◦ ϕ the composition with
ϕ. From Lem. 2.6 we see that Rϕ is a bounded linear map Rϕ : Hn → Hn. The
following lemma tells us that the transpose of this map respects Sobolev orders.
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Lemma 2.7. Let n ≥ 2, ϕ ∈ Dn(S 1) and −n ≤ k ≤ n− 1. Then the restrictions of
R∗ϕ are bounded linear maps

R∗ϕ � Hk(S 1,Rd) : Hk(S 1,Rd)→ Hk(S 1,Rd) .

On L2(S 1,Rd) we have the identity R∗
ϕ−1 ( f ) = Rϕ( f )ϕ′.

Proof. For −n ≤ k ≤ 0, we obtain from Lem. 2.6 that Rϕ is a map Rϕ : H−k →

H−k and by L2-duality we obtain that R∗ϕ : Hk → Hk as required.
Now let 0 ≤ k ≤ n − 1, f ∈ Hk and g ∈ Hn. We replace ϕ by ϕ−1 to simplify

the formulas. By definition of the transpose〈
R∗
ϕ−1 f , g

〉
H−n×Hn

=
〈

f ,Rϕ−1 g
〉

H−n×Hn
=

=

∫
S 1

〈
f (θ), g(ϕ−1(θ))

〉
dθ =

∫
S 1
〈 f (ϕ(θ)), g(θ)〉ϕ′(θ) dθ =

=
〈(

Rϕ f
)
ϕ′, g

〉
H−p×Hp

.

Thus we obtain R∗
ϕ−1 ( f ) = Rϕ( f )ϕ′ and using Lem. 2.5 we see that for f ∈ Hk

we also have R∗
ϕ−1 ( f ) ∈ Hk.

2.8. Notation We will write
f .A g

if there exists a constant C > 0, possibly depending on A, such that the inequality
f ≤ Cg holds.

2.9. Gronwall Inequalities The following version of Gronwall’s inequality
can be found in [22, Thm. 1.3.2] and [12].

Theorem 2.10. Let A, Φ, Ψ be real continuous functions defined on [a, b] and
Φ ≥ 0. We suppose that on [a, b] we have the following inequality

A(t) ≤ Ψ(t) +

∫ t

a
A(s)Φ(s) ds .

Then

A(t) ≤ Ψ(t) +

∫ t

a
Ψ(s)Φ(s) exp

(∫ t

s
Φ(u) du

)
ds

holds on [a, b].

We will repeatedly use the following corollary.
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Corollary 2.11. Let A, G be real, continuous functions on [0,T ] with G ≥ 0 and
α, β non-negative constants. We suppose that on [0,T ] we have the inequality

A(t) ≤ A(0) +

∫ t

0
(α + βA(s))G(s) ds .

Then

A(t) ≤ A(0) +
(
α + (A(0) + αN)βeβN

) ∫ t

0
G(s) ds

holds in [0,T ] with N =
∫ T

0 G(t) dt.

Proof. Apply the Gronwall inequality with [a, b] = [0,T ], Ψ(t) = A(0) +

α
∫ t

0 G(s) ds and Φ(s) = βG(s), and note that G(s) ≥ 0 implies
∫ t

s G(u) du ≤
N.

2.12. Poincaré Inequalities In the later sections it will be necessary to esti-
mate the Hk(ds)-norm of a function by the Hn(ds)-norm with k < n, as well as
the L∞-norm by the Hk(ds)-norm. In particular, we will need to know, how the
curve c enters into the estimates. The basic result is the following lemma, which
is adapted from [15, Lem. 18].

Lemma 2.13. Let c ∈ Imm2(S 1,R2) and h : S 1 → Rd be absolutely continuous.
Then

sup
θ∈S 1

∣∣∣∣∣h(θ) −
1
`c

∫
S 1

h ds
∣∣∣∣∣ ≤ 1

2

∫
S 1
|Dsh| ds .

Proof. Since h(0) = h(2π), the following equality holds,

h(θ) − h(0) =
1
2

(∫ θ

0
h′(σ) dσ −

∫ 2π

θ

h′(σ) dσ
)
,

and hence after integration

1
`c

∫
S 1

h ds − h(0) =
1

2`c

∫
S 1

(∫ θ

0
h′(σ) dσ −

∫ 2π

θ

h′(σ) dσ
)

ds .

Next we take the absolute value∣∣∣∣∣ 1
`c

∫
S 1

h ds − h(0)
∣∣∣∣∣ ≤ 1

2`c

∫
S 1

(∫ θ

0
|h′(σ)| dσ +

∫ 2π

θ

|h′(σ)| dσ
)

ds

≤
1

2`c

∫
S 1
|h′(σ)| dσ

∫
S 1

1 ds =
1
2

∫
S 1
|Dsh| ds

Now we replace 0 by an arbitrary θ ∈ S 1 and repeat the above steps.
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This lemma permits us to prove the inequalities that we will use throughout
the remainder of the paper.

Lemma 2.14. Let c ∈ Imm2(S 1,R2) and h ∈ H2(S 1,Rd). Then

• ‖h‖2L∞ ≤
2
`c
‖h‖2L2(ds) +

`c

2
‖Dsh‖2L2(ds) ,

• ‖Dsh‖2L∞ ≤
`c

4
‖D2

sh‖2L2(ds) ,

• ‖Dsh‖2L2(ds) ≤
`2

c

4
‖D2

sh‖2L2(ds) .

Proof. From Lem. 2.13 we obtain the inequality

‖h‖L∞ ≤
1
`c

∫
S 1
|h| ds +

1
2

∫
S 1
|Dsh| ds .

Next we use (a + b)2 ≤ 2a2 + 2b2 and Cauchy-Schwarz in

‖h‖2L∞ ≤
2
`2

c

(∫
S 1
|h| ds

)2

+
1
2

(∫
S 1
|Dsh| ds

)2

≤
2
`c

(∫
S 1
|h|2 ds

)
+
`c

2

(∫
S 1
|Dsh|2 ds

)
,

thus proving the first statement. To prove the second statement we note that∫
S 1 Dsh ds = 0 and thus by Lem. 2.13

‖Dsh‖L∞ ≤
1
2

∫
S 1
|D2

sh| ds .

Hence

‖Dsh‖2L∞ ≤
1
4

(∫
S 1
|D2

sh| ds
)2

≤
`c

4
‖D2

sh‖2L2(ds) .

To prove the third statement we estimate

‖Dsh‖2L2(ds) ≤ ‖Dsh‖2L∞
∫

S 1
1 ds ≤

`2
c

4
‖D2

sh‖2L2(ds) .

This completes the proof.

The next lemma allows us to estimate the Hk(ds)-norm using a combination
of the L2(ds)- and the Hn(ds)-norms, without introducing constants that depend
on the curve.
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Lemma 2.15. Let n ≥ 2, c ∈ Immn(S 1,R2) and h ∈ Hn(S 1,Rd). Then for
0 ≤ k ≤ n,

‖Dk
sh‖

2
L2(ds) ≤ ‖h‖

2
L2(ds) + ‖Dn

sh‖2L2(ds) .

Proof. Let us write Dc and L2(c) for Ds and L2(ds) respectively to emphasize
the dependence on the curve c. Since

∥∥∥Dk
ch

∥∥∥
L2(c) =

∥∥∥Dk
c◦ϕ(h ◦ ϕ)

∥∥∥
L2(c◦ϕ)

, we
can assume that c has a constant speed parametrization, i.e. |c′| = `c/2π. The
inequality we have to show is∫ 2π

0

(
2π
`c

)2k−1 ∣∣∣h(k)(θ)
∣∣∣2 dθ ≤

∫ 2π

0

`c

2π
|h(θ)|2 +

(
2π
`c

)2n−1 ∣∣∣h(n)(θ)
∣∣∣2 dθ .

Let ϕ(x) = 2π
`c

x. After a change of variables this becomes∫ `c

0

∣∣∣(h ◦ ϕ)(k)(x)
∣∣∣2 dx ≤

∫ `c

0
|h ◦ ϕ(x)|2 +

∣∣∣(h ◦ ϕ)(n)(x)
∣∣∣2 dx . (3)

Let f = h ◦ ϕ and assume w.l.o.g. that f is R-valued. Define fk(x) =

`−1/2
c exp

(
i 2πk
`c

x
)
, which is an orthonormal basis of L2([0, `c],R). Then f =∑

k∈Z f̂ (k) fk and (3) becomes∑
k∈Z

(
2πk
`c

)2k ∣∣∣ f̂ (k)
∣∣∣2 ≤∑

k∈Z

[
1 +

(
2πk
`c

)2n
] ∣∣∣ f̂ (k)

∣∣∣2 .
Since for a ≥ 0 we have the inequality ak ≤ 1 + an, the last inequality is satisfied,
thus concluding the proof.

An alternative way to estimate the Hk(ds)-norm is given by the following
lemma, which is the periodic version of the Gagliardo-Nirenberg inequalities
(see [20]).

Lemma 2.16. Let n ≥ 2, c ∈ Immn(S 1,R2) and h ∈ Hn(S 1,Rd). Then for
0 ≤ k ≤ n,

‖Dk
sh‖L2(ds) ≤ ‖h‖

1−k/n
L2(ds) ‖D

n
sh‖k/nL2(ds) .

If c ∈ Imm2(S 1,R2), the inequality also holds for n = 0, 1.

2.17. The Geodesic Equation on Weak Riemannian Manifolds Let V be
a convenient vector space, M ⊆ V an open subset and G a possibly weak
Riemannian metric on M. Denote by L̄ : T M → (T M)′ the canonical map
defined by

Gc(h, k) = 〈L̄ch, k〉T M ,
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with c ∈ M, h, k ∈ TcM and with 〈·, ·〉T M denoting the canonical pairing between
(T M)′ and T M. We also define Hc(h, h) ∈ (TcM)′ via

Dc,mGc(h, h) = 〈Hc(h, h),m〉T M ,

with Dc,m denoting the directional derivative at c in direction m. In fact H is a
smooth map

H : T M → (T M)′ , (c, h) 7→ (c,Hc(h, h)) .

With these definitions we can state how to calculate the geodesic equation.

Lemma 2.18. The geodesic equation – or equivalently the Levi-Civita covariant
derivative – on (M,G) exists if and only if 1

2 Hc(h, h)−
(
Dc,hL̄c

)
(h) is in the image

of L̄c for all (c, h) ∈ T M and the map

T M → T M , (c, h) 7→ L̄−1
c

(
1
2 Hc(h, h) −

(
Dc,hL̄c

)
(h)

)
is smooth. In this case the geodesic equation can be written as

ct = L̄−1
c p

pt =
1
2

Hc(ct, ct)
or ctt =

1
2

L̄−1
c

(
Hc(ct, ct) −

(
∂t L̄c

)
(ct)

)
.

This lemma is an adaptation of the result given in [3, 2.4.1] and the same
proof can be repeated; see also [16, Sect. 2.4].

3. Sobolev Metrics with Constant Coefficients

In this paper we will consider Sobolev-type metrics with constant coefficients.
These are metrics of the form

Gc(h, k) =

∫
S 1

n∑
j=0

a j〈D
j
sh,D

j
sk〉 ds ,

with a j ≥ 0 and a0, an , 0. We call n the order of the metric. The metric can
be defined either on the space Imm(S 1,R2) of (C∞-)smooth immersions or for
p ≥ n on the spaces Immp(S 1,R2) of Sobolev Hp-immersions.

3.1. The Space of Smooth Immersions Let us first consider G on the space
of smooth immersions. The metric can be represented via the associated family
of operators, L, which are defined by

Gc(h, k) =

∫
S 1
〈Lch, k〉 ds =

∫
S 1
〈h, Lck〉 ds ,
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The operator Lc : Tc Imm(S 1,R2) → Tc Imm(S 1,R2) for a Sobolev metric with
constant coefficients can be calculated via integration by parts and is given by

Lch =

n∑
j=0

(−1) ja jD
2 j
s h .

The operator Lc is self-adjoint, positive and hence injective. Since Lc is elliptic, it
is Fredholm Hk → Hk−2n with vanishing index and thus surjective. Furthermore
its inverse is smooth as well. We want to distinguish between the operator Lc

and the canonical embedding from Tc Imm into (Tc Imm)′, which we denote by
L̄c. They are related via

L̄ch = Lch ⊗ ds = Lch ⊗ |c′| dθ .

Later we will simply write L̄ch = Lch |c′|, especially when the order of multipli-
cation and differentiation becomes important in Sobolev spaces.

3.2. The Space of Sobolev Immersions Assume n ≥ 2 and let G be a Sobolev
metric of order n. We want to extend G from the space Imm(S 1,R2) to a
smooth metric on the Sobolev-completion Immn(S 1,R2). First we have to
look at the action of the arc-length derivative and its transpose (with respect
to H0(dθ)) on Sobolev spaces. Remember that we always use the Hn(dθ)-norm
on Sobolev completions. We can write Ds as the composition Ds = 1

|c′ | ◦ ∂θ,
where 1

|c′ | is interpreted as the multiplication operator f 7→ 1
|c′ | f . Its transpose is

D∗s = ∂∗θ ◦
(

1
|c′ |

)∗
= −∂θ ◦

1
|c′ | . These operators are smooth in the following sense.

Lemma 3.3. Let n ≥ 2 and k ∈ Z with |k| ≤ n − 1. Then the maps

Ds : Immn(S 1,R2) × Hk+1(S 1,Rd)→ Hk(S 1,Rd) , (c, h) 7→ Dsh = 1
|c′ |h

′

D∗s : Immn(S 1,R2) × Hk(S 1,Rd)→ Hk−1(S 1,Rd) , (c, h) 7→ D∗sh = −
(

1
|c′ |h

)′
are smooth.

Proof. For n ≥ 2, the map c 7→ 1
|c′ | is the composition of the following smooth

maps,

Immn(S 1,R2) → { f : f > 0} ⊂ Hn−1(S 1,R) → Hn−1(S 1,R)
c 7→ |c′| 7→ 1

|c′ |
.

Since 1
|c′ | ∈ Hn−1(S 1,R2), Lem. 2.5. concludes the proof.



Geodesic Completeness for Sobolev Metrics on Imm(S 1,R2) 13

Using Lem. 3.3 we see that

Gc(h, h) =

∫
S 1

n∑
k=0

ak〈Dk
sh,D

k
sh〉 ds

is well-defined for (c, h) ∈ T Immn(S 1,R2). As the tangent bundle is isomorphic
to T Immn(S 1,R2) � Immn(S 1,R2) × Hn(S 1,R2), we can also write the metric
as

Gc(h, h) =

〈 n∑
k=0

ak (Dk
s)
∗ |c′|Dk

sh, h
〉

H−n×Hn

.

Again we note that |c′| has to be interpreted as the multiplication operator
f 7→ |c′| f on the spaces Hk with |k| ≤ n − 1. Thus the operator L̄c : Hn → H−n

is given by

L̄c =

n∑
k=0

ak (Dk
s)
∗ ◦ |c′| ◦ Dk

s .

While it is tempting to “simplify” the expression for L̄c using the identity

D∗s ◦ |c
′| = −|c′| ◦ Ds ,

one has to be careful, since the identity is only valid, when interpreted as an
operator Hk → Hk−1 with −n + 2 ≤ k ≤ n− 1. The left hand side however makes
sense also for k = −n + 1. Thus we have the operator

(Dn
s)∗ ◦ |c′| : L2 → H−n ,

but the domain has to be at least H1 for the operator

(−1)n |c′| ◦ Dn
s : H1 → H−n+1 .

So the expression

L̄ch =

n∑
k=0

(−1)kak |c′|D2k
s h ,

is only valid, when we restrict L̄c to Hn+1, i.e., L̄c : Hn+1 → H−n+1.

3.4. The Geodesic Equation By Lem. 2.18, we need to calculate Hc(h, h).
This is achieved in the following lemma.

Lemma 3.5. Let n ≥ 2 and let G be a Sobolev metric of order n. On
Immn(S 1,R2) we have

Hc(h, h) = −a0 |c′|Ds (〈h, h〉v)−
n∑

k=1

2k−1∑
j=1

(−1)k+ jak D∗s ◦
(
|c′|〈D2k− j

s h,D j
sh〉v

)
. (4)
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On Immp(S 1,R2) with p ≥ n + 1 as well as Imm(S 1,R2) we have the equivalent
expression,

Hc(h, h) =

(
− 2〈Lch,Dsh〉v − a0〈h, h〉κn +

+

n∑
k=1

2k−1∑
j=1

(−1)k+ jak〈D
2k− j
s h,D j

sh〉κn
)
⊗ ds .

Proof. For k ≥ 1 the variation of the k-th arc-length derivative is

Dc,mDk
sh = −

k∑
j=1

Dk− j
s

(
〈Dsm, v〉D

j
sh

)
,

and the formula is valid for (c,m) ∈ T Immn(S 1,R2) and h ∈ H−n+k(S 1,Rd). So

Dc,mGc(h, h) =

∫
S 1

n∑
k=0

ak 〈Dk
sh,D

k
sh〉〈Dsm, v〉 |c′| + 2

n∑
k=1

ak

〈
Dk

sh,Dc,mDk
sh

〉
|c′| dθ

=

〈 n∑
k=0

ak |c′|〈Dk
sh,D

k
s〉v,Dsm

〉
H−n+1×Hn−1

− 2
n∑

k=1

k∑
j=1

ak

〈
|c′|Dk

sh,D
k− j
s 〈Dsm, v〉D

j
sh

〉
H−n+k×Hn−k

.

Each term in the second sum is equal to〈
|c′|Dk

sh,D
k− j
s 〈Dsm, v〉D

j
sh

〉
H−n+k×Hn−k

=

=
〈(

Dk− j
s

)∗
|c′|Dk

sh, 〈Dsm, v〉D
j
sh

〉
H−n+ j×Hn− j

= (−1)k− j
〈
|c′|D2k− j

s h, 〈Dsm, v〉D
j
sh

〉
H−n+ j×Hn− j

= (−1)k− j
〈
|c′| 〈D2k− j

s h,D j
sh〉v,Dsm

〉
H−n+1×Hn−1

.

So

Hc(h, h) =

=

n∑
k=0

akD∗s ◦
(
|c′|〈Dk

sh,D
k
sh〉v

)
− 2

n∑
k=1

k∑
j=1

(−1)k− jakD∗s ◦
(
|c′|〈D2k− j

s h,D j
sh〉v

)
= −a0 |c′|Ds (〈h, h〉v) −

n∑
k=1

2k−1∑
j=1

(−1)k+ jak D∗s ◦
(
|c′|〈D2k− j

s h,D j
sh〉v

)
.
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This proves the first formula.
If (c, h) ∈ T Immp(S 1,R2) with p ≥ 1, we can commute D∗s ◦ |c

′| = −|c′| ◦ Ds
to obtain

Hc(h, h) = −a0 |c′|Ds (〈h, h〉v) +

n∑
k=1

2k−1∑
j=1

(−1)k+ jak |c′|Ds

(
〈D2k− j

s h,D j
sh〉v

)
.

Parts of the expression simplify as follows

n∑
k=1

2k−1∑
j=1

(−1)k+ jakDs

(
〈D2k− j

s h,D j
sh〉

)
− a0Ds

(
〈h, h〉

)
=

n∑
k=1

2k−1∑
j=1

(−1)k+ jak

(
〈D2k− j+1

s h,D j
sh〉 + 〈D

2k− j
s h,D j+1

s h〉
)
− 2a0〈h,Dsh〉

=

n∑
k=1

ak

2k−2∑
j=0

(−1)k+ j+1〈D2k− j
s h,D j

sh〉 +
2k−1∑
j=1

(−1)k+ j〈D2k− j
s h,D j+1

s h〉

−2a0〈h,Dsh〉

=

n∑
k=1

(−1)k+12ak〈D2k
s h,Dsh〉 − 2a0〈h,Dsh〉

= −2〈Lch,Dsh〉 ,

And by collecting the remaining terms we arrive at the desired result.

Now that we have computed Hc(h, h), we can write the geodesic equation of
the metric G. It is

∂t

(
L̄cct

)
= −

a0

2
|c′|Ds (〈ct, ct〉v)

−

n∑
k=1

2k−1∑
j=1

(−1)k+ j ak

2
D∗s ◦

(
|c′|〈D2k− j

s ct,D
j
sct〉v

)
.

(5)

3.6. Local Well-Posedness It has been shown in [18, Thm. 4.3] that the
geodesic equation of a Sobolev metric is well-posed on Immp(S 1,R2) for p ≥
2n + 1. For a metric of order n ≥ 2 we extend the result to p ≥ n. This will later
simplify the proof of geodesic completeness.

Theorem 3.7. Let n ≥ 2, p ≥ n and let G be a Sobolev metric of order n with
constant coefficients. Then the geodesic equation (5) has unique local solutions
in the space Immp(S 1,R2) of Sobolev Hp-immersions. The solutions depend C∞

on t and the initial conditions. The domain of existence (in t) is uniform in p and
thus the geodesic equation also has local solutions in Imm(S 1,R2), the space of
smooth immersions.
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Proof. Fix p ≥ n. For the geodesic equation to exist, we need to verify the
assumptions in Lem. 2.18. We first note that L̄c is a map L̄c : Hp → Hp−2n. By
inspecting (4) we see that Hc(h, h) ∈ Hp−2n as well. Thus it remains to show that
L̄c maps Hp onto Hp−2n and that the inverse is smooth. This is shown in 3.8.

Regarding local existence, we rewrite the geodesic equation as a differential
equation on T Immn(S 1,R2),

ct = u

ut =
1
2

L̄−1
c

(
Hc(u, u) −

(
Dc,uL̄c

)
(u)

)
.

This is a smooth ODE on a Hilbert space and therefore by Picard-Lindelöf it has
local solutions, that depend smoothly on t and the initial conditions. That the
intervals of existence are uniform in the Sobolev order p, can be found in [3,
App. A]. The result goes back to [9, Thm. 12.1] and a different proof can be
found in [18].

The following lemma shows that the operator L̄c has a smooth inverse on
appropriate Sobolev spaces. For p = n, we can use Lem. 5.1 and the lemma
of Lax-Milgram to show that L̄c : Hn → H−n is invertible. For p > n more
work is necessary. Although L̄c is an elliptic, positive differential operator, it
has non-smooth coefficients. In fact, since |c′| ∈ Hn−1, some of the coefficients
are only distributions. To overcome this, we will exploit the reparametrization
invariance of the metric to transform L̄c into a differential operator with constant
coefficients.

Lemma 3.8. Let n ≥ 2 and G be a Sobolev metric of order n. For p ≥ n and
c ∈ Immp(S 1,R2), the associated operators

L̄c : Hp(S 1,Rd)→ Hp−2n(S 1,Rd) ,

are isomorphisms and the map

L̄−1 : Immp(S 1,R2) × Hp−2n(S 1,Rd)→ Hp(S 1,Rd) , (c, h) 7→ L̄−1
c h

is smooth.

Proof. Given a curve c ∈ Immp(S 1,R2), we can write it as c = d◦ψ, where d has
constant speed, |d′| = `c/2π, and ψ is a diffeomorphism of S 1. The pair (d, ψ) is
determined only up to rotations; we can remove the ambiguity by requiring that
c(0) = d(0). Then ψ is given by

ψ(θ) =
2π
`c

∫ θ

0
|c′(σ)| dσ .
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Concerning regularity, we have ψ and ψ−1 ∈ Hp(S 1, S 1) thus ψ ∈ Dp(S 1), and
d ∈ Immp(S 1,R2).

The reparametrization invariance of the metric G implies

〈L̄ch,m〉H−p×Hp =
〈
L̄c◦ψ−1 (h ◦ ψ−1),m ◦ ψ−1

〉
H−p×Hp

.

Introduce the notation Rϕ(h) = h ◦ ϕ. If ϕ ∈ Dp(S 1) is a diffeomorphism, the
map Rϕ is an invertible linear map Rϕ : Hp → Hp, by Lem. 2.6. Furthermore by
Lem. 2.7 the transpose R∗ϕ is an invertible map R∗ϕ : Hp−2n → Hp−2n. Thus we
get

L̄ch = R∗
ψ−1 ◦ L̄d ◦ Rψ−1 (h) .

Because |d′| = `c/2π, the operator L̄d is equal to

L̄d =

n∑
k=0

(−1)kak

(
2π
`c

)2k−1

∂2k
θ .

This is a positive, elliptic differential operator with constant coefficients and thus
L̄d : Hp → Hp−2n is invertible. Thus the composition L̄c : Hp → Hp−2n

is invertible. Smoothness of (c, h) 7→ L̄−1
c h follows from the smoothness of

(c, h) 7→ L̄ch and the implicit function theorem on Banach spaces.

The remainder of the paper will be concerned with the analysis of the
geodesic distance function induced by Sobolev metrics. These results will be
used to show that geodesics for metrics of order 2 and higher exist for all times.

4. Lower Bounds on the Geodesic Distance
To prepare the proof of geodesic completeness we first need to use geodesic

distance to estimate quantities, that are derived from the curve and that appear
in the geodesic equation. These include the length `c, curvature κ, its derivatives
Dk

sκ as well as the length element |c′| and its derivatives Dk
s log |c′|. We want to

show that they are bounded on metric balls of a Sobolev metric of sufficiently
high order.

We start with the length `c. The argument given in [18, Sect. 4.7] can be used
to show the following slightly stronger statement.

Lemma 4.1. Let the metric G on Imm(S 1,R2) satisfy∫
S 1
〈Dsh, v〉2 ds ≤ A Gc(h, h) ,

for some A > 0. Then we have the estimate∥∥∥∥∥√
|c′1| −

√
|c′2|

∥∥∥∥∥
L2(dθ)

≤

√
A

2
distG(c1, c2) ,

in particular the function
√
|c′| : (Imm(S 1,R2), distG)→ L2(S 1,R) is Lipschitz.
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Proof. Take two curves c1, c2 ∈ Imm(S 1,R2) and let c(t, θ) be a smooth path
between them. Then the following relation holds pointwise for each θ ∈ S 1,√

|c′2|(θ) −
√
|c′1|(θ) =

∫ 1

0
∂t

( √
|c′|

)
(t, θ) dt .

The derivative ∂t
√
|c′| is given by

∂t

√
|c′| =

1
2
〈Dsct, v〉

√
|c′| ,

and so ∥∥∥∥∥√
|c′1| −

√
|c′2|

∥∥∥∥∥
L2(dθ)

≤
1
2

∫ 1

0

∥∥∥∥〈Dsct, v〉
√
|c′|

∥∥∥∥
L2(dθ)

dt

≤
1
2

∫ 1

0

∥∥∥〈Dsct, v〉
∥∥∥

L2(ds) dt

≤

√
A

2

∫ 1

0

√
Gc(ct, ct) dt

≤

√
A

2
LenG(c) .

Since this estimate holds for every smooth path c, by taking the infimum we
obtain ∥∥∥∥∥√

|c′1| −
√
|c′2|

∥∥∥∥∥
L2
≤

√
A

2
inf

c
LenG(c) =

√
A

2
distG(c1, c2) .

We recover the statement of [18, Sect. 4.7] by applying the reverse triangle
inequality. The following corollary is a disguised version of the fact, that on a
normed space the norm function is Lipschitz.

Corollary 4.2. If the metric G on Imm(S 1,R2) satisfies∫
S 1
〈Dsh, v〉2 ds ≤ A Gc(h, h) ,

for some A > 0, then the function
√
`c : (Imm(S 1,R2), distG)→ R>0 is Lipschitz.

Proof. The statement follows from

`c =

∫
S 1
|c′(θ)| dθ =

∥∥∥∥√
|c′|

∥∥∥∥2

L2(dθ)
,

and the inequality∣∣∣∣ √`c1 −
√
`c2

∣∣∣∣ =

∣∣∣∣∣∣
∥∥∥∥∥√
|c′1|

∥∥∥∥∥
L2(dθ)

−

∥∥∥∥∥√
|c′2|

∥∥∥∥∥
L2(dθ)

∣∣∣∣∣∣ (6)

≤

∥∥∥∥∥√
|c′1| −

√
|c′2|

∥∥∥∥∥
L2(dθ)

≤

√
A

2
distG(c1, c2) .
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Remark 4.3. Lemma 4.1 and Cor. 4.2 apply in particular to Sobolev metrics of
order n ≥ 1. For n = 1 this is clear from 〈Dsh, v〉2 ≤ |Dsh|2. For n ≥ 2 we use
Lem. 2.15 to estimate∫

S 1
〈Dsh, v〉2 ds ≤ ‖Dsh‖2L2(ds) ≤ ‖h‖

2
L2(ds) + ‖Dn

sh‖2L2(ds) ≤ max
(
a−1

0 , a−1
n

)
Gc(h, h) .

We could have also used Lem. 2.16,∫
S 1
〈Dsh, v〉2 ds ≤ ‖Dsh‖2L2(ds) ≤ ‖h‖

2−2/n
L2(ds) ‖D

n
sh‖2/nL2(ds) ≤ a(1−n)/n

0 a−1/n
n Gc(h, h) ,

to reach the same conclusion.

The following lemma shows a similar statement for `−1/2
c . We do not get

global Lipschitz continuity, instead the function `−1/2
c is Lipschitz on every

metric ball. This implies that `−1
c is bounded on every metric ball. We will

show later in Cor. 4.11 that the pointwise quantities |c′(θ)| and |c′(θ)|−1 are also
bounded on metric balls.

Lemma 4.4. Let the metric G on Imm(S 1,R2) satisfy∫
S 1
|h|2 +

∣∣∣Dn
sh

∣∣∣2 ds ≤ A Gc(h, h)

for some n ≥ 2 and some A > 0. Given c0 ∈ Imm(S 1,R2) and N > 0 there
exists a constant C = C(c0,N) such that for all c1, c2 ∈ Imm(S 1,R2) with
distG(c0, ci) < N, i = 1, 2, we have∣∣∣`−1/2

c1
− `−1/2

c2

∣∣∣ < C(c0,N) distG(c1, c2) .

In particular the function `−1/2
c : (Imm(S 1,R2), distG) → R>0 is Lipschitz on

every metric ball.

Proof. Fix c1, c2 with distG(c0, ci) < N and let c(t, θ) be a path between them,
such that distG(c0, c(t)) < 2N. Then

∂t

(
`−1/2

c

)
= − 1

2`
−3/2
c

∫
S 1
〈Dsct, v〉 |c′| dθ ,

and by taking absolute values∣∣∣∣∂t

(
`−1/2

c

)∣∣∣∣ ≤ 1
2`
−3/2
c

∫
S 1
|〈Dsct, v〉| |c′| dθ

≤ 1
2`
−3/2
c

√∫
S 1
|c′| dθ

√∫
S 1
〈Dsct, v〉2 |c′| dθ

≤ 1
2`
−1
c ‖Dsct‖L2(ds) ≤

1
2`
−1
c

(
`c

2

)n−1

‖Dn
sct‖L2(ds) by 2.14,

≤ 2−n `n−2
c

√
A

√
Gc(ct, ct) .
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By Cor. 4.2 the length `c is bounded along the path c(t, θ) and and since n ≥ 2 so
is `n−2

c . Thus ∣∣∣`−1/2
c1
− `−1/2

c2

∣∣∣ ≤ ∫ 1

0

∣∣∣∣∂t

(
`−1/2

c

)∣∣∣∣ dt

≤ 2−n
√

A
∫ 1

0
`n−2

c

√
Gc(ct, ct) dt

.c0,N LenG(c) ; see 2.8 for notation.

After taking the infimum over all paths connecting c1 and c2 we obtain∣∣∣`−1/2
c1
− `−1/2

c2

∣∣∣ .c0,N distG(c1, c2) .

Remark. We can compute the constant C = C(c0,N) in Lem. 4.4 explicitly.
Indeed from ∣∣∣`−1/2

c1
− `−1/2

c2

∣∣∣ ≤ 2−n
√

A
∫ 1

0
`n−2

c

√
Gc(ct, ct) dt ,

we obtain, following the proof,∣∣∣`−1/2
c1
− `−1/2

c2

∣∣∣ ≤ 2−n
√

A

 sup
distG(c,c0)<N

`n−2
c

 distG(c1, c2) .

Now, using (6), we can estimate `c via√
`c ≤

√
`c0 +

∣∣∣∣ √`c −
√
`c0

∣∣∣∣ ≤ √
`c0 +

1
2

√
A distG(c, c0) ≤

√
`c0 +

1
2

√
AN .

Thus we can use

C(c0,N) = 2−n
√

A
( √

`c0 + 1
2

√
AN

)2n−4

for the constant.

Corollary 4.5. Let G satisfy the assumptions of Lem. 4.4. Then `−1
c is bounded

on every metric ball of (Imm(S 1,R2), distG).

Proof. Fix c0 ∈ Imm(S 1,R2) and N > 0 and let c ∈ Imm(S 1,R2) with
distG(c0, c) < N. Then

`−1/2
c ≤ `−1/2

c0
+

∣∣∣`−1/2
c0
− `−1/2

c

∣∣∣ .c0,N `c0 + distG(c0, c) .c0,N 1 ,

and thus `−1/2
c is bounded on metric balls, which implies that `−1

c is bounded as
well.
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The variations of the turning angle α and of log |c′| are given by

Dc,h
(
log |c′|

)
= 〈Dsh, v〉

Dc,hα = 〈Dsh, n〉 .

As a preparation for the proof of Thm. 4.7 we compute explicit expressions for
the variations of their derivatives.

Lemma 4.6. Let c ∈ Imm(S 1,R2), h ∈ Tc Imm(S 1,R2) and k ≥ 0. Then

Dc,h

(
Dk

s log |c′|
)

= Dk
s〈Dsh, v〉 −

k−1∑
j=0

(
k

j + 1

) (
Dk− j

s log |c′|
)

D j
s〈Dsh, v〉 (7)

Dc,h

(
Dk

sα
)

= Dk
s〈Dsh, n〉 −

k−1∑
j=0

(
k

j + 1

) (
Dk− j

s α
)

D j
s〈Dsh, v〉 . (8)

Proof. Recall Lem. 2.3: if F : Imm(S 1,R2)→ C∞(S 1,Rd) is smooth then

Dc,h (Ds ◦ F) = Ds
(
Dc,hF

)
− 〈Dsh, v〉DsF(c) .

For k = 0, by Sect. 2.2 we have

Dc,h
(
log |c′|

)
= 〈Dsh, v〉 , Dc,hα = 〈Dsh, n〉 , Dc,hDs = −〈Dsh, v〉Ds ,

Dc,h(Dk
s) = −

k−1∑
j=0

D j
s ◦ 〈Dsh, v〉 ◦ Dk− j

s .

Thus we get

Dc,h

(
Dk

s log |c′|
)

= Dk
s〈Dsh, v〉 −

k−1∑
j=0

D j
s

(
〈Dsh, v〉

(
Dk− j

s log |c′|
))
.

Next we use the identity [21, (26.3.7)],
k−1∑
j=i

(
j
i

)
=

(
k

i + 1

)
,

and the product rule for differentiation to obtain

Dc,h

(
Dk

s log |c′|
)

= Dk
s〈Dsh, v〉 −

k−1∑
j=0

j∑
i=0

(
j
i

) (
Dk− j+ j−i

s log |c′|
)

Di
s〈Dsh, v〉

= Dk
s〈Dsh, v〉 −

k−1∑
i=0

k−1∑
j=i

(
j
i

) (
Dk−i

s log |c′|
)

Di
s〈Dsh, v〉

= Dk
s〈Dsh, v〉 −

k−1∑
i=0

(
k

i + 1

) (
Dk−i

s log |c′|
)

Di
s〈Dsh, v〉 ,
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which completes the first part of the proof. Along the same lines we also get the
variation of Dk

sα.

Theorem 4.7. Assume that the metric G on Imm(S 1,R2) satisfies∫
S 1
|h|2 + |Dn

sh|2 ds ≤ A Gc(h, h) . (9)

for some n ≥ 2 and some A > 0. For each c0 ∈ Imm(S 1,R2) and N > 0
there exists a constant C = C(c0,N) such that for all c1, c2 ∈ Imm(S 1,R2) with
distG(c0, ci) < N and all 0 ≤ k ≤ n − 2 we have∥∥∥∥∥(Dk

c1
κ1)

√
|c′1| − (Dk

c2
κ2)

√
|c′2|

∥∥∥∥∥
L2(dθ)

≤ C distG(c1, c2)∥∥∥∥∥(Dk+1
c1

log |c′1|)
√
|c′1| − (Dk+1

c2
log |c′2|)

√
|c′2|

∥∥∥∥∥
L2(dθ)

≤ C distG(c1, c2) .

In particular the functions

(Dk
sκ)

√
|c′| : (Imm(S 1,R2), distG)→ L2(S 1,R)

(Dk+1
s log |c′|)

√
|c′| : (Imm(S 1,R2), distG)→ L2(S 1,R)

are continuous and Lipschitz continuous on every metric ball.

Proof. We have distG(c1, c2) < 2N by the triangle inequality. Let c(t, θ) be a path
between c1 and c2 with LenG(c) ≤ 3N. Then

distG(c0, c(t)) ≤ distG(c0, c1) + distG(c1, c(t))

≤ N + LenG(c|[0,t])
≤ N + 3N ≤ 4N ;

thus any path of this kind remains within a ball of radius 4N around c0.
We will prove the theorem for each n by induction over k. The proof of the

continuity of (Dk
sκ)
√
|c′| does not depend on the continuity of (Dk+1

s log |c′|)
√
|c′|.

Thus, even if we prove both statements in parallel, we will assume that we
have established the continuity and local Lipschitz continuity of (Dk

sκ)
√
|c′|when

estimating ‖∂t
(
(Dk+1

s log |c′|)
√
|c′|

)
‖L2(dθ) below; in particular we will need that∥∥∥Dk

sκ
∥∥∥

L2(ds) remains bounded along the path. (10)

The proof consists of two steps. First we show that the following estimates
hold along c(t, θ):∥∥∥∥∂t

(
(Dk

sκ)
√
|c′|

)∥∥∥∥
L2(dθ)

.c0,N

(
1 + ‖Dk

sκ‖L2(ds)

) √
Gc(ct, ct) (11)∥∥∥∥∂t

(
(Dk+1

s log |c′|)
√
|c′|

)∥∥∥∥
L2(dθ)

.c0,N

(
1 + ‖Dk+1

s log |c′|‖L2(ds)

) √
Gc(ct, ct) . (12)
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Then we apply Gronwall’s inequality to prove the theorem.
Step 1. For k = 0 we have

∂t
(
κ
√
|c′|

)
= 〈D2

sct, n〉
√
|c′| − 3

2κ〈Dsct, v〉
√
|c′|

∂t
(
(Ds log |c′|)

√
|c′|

)
= 〈D2

sct, v〉
√
|c′| + κ〈Dsct, n〉

√
|c′| −

− 1
2 (Ds log |c′|)〈Dsct, v〉

√
|c′| ,

and therefore ∥∥∥∥∂t
(
κ
√
|c′|

)∥∥∥∥
L2(dθ)

≤ ‖D2
sct‖L2(ds) + 3

2‖κ‖L2(ds)‖Dsct‖L∞∥∥∥∥∂t
(
(Ds log |c′|)

√
|c′|

)∥∥∥∥
L2(dθ)

≤ ‖D2
sct‖L2(ds) + ‖κ‖L2(ds)‖Dsct‖L∞ +

+ 1
2‖Ds log |c′|‖L2(ds)‖Dsct‖L∞ .

Note that the length `c is bounded along c(t, θ) by Cor. 4.2. Using the Poincaré
inequalities from Lem. 2.14 and assumption (9) we obtain∥∥∥∥∂t

(
κ
√
|c′|

)∥∥∥∥
L2(dθ)

.c0,N

(
1 + ‖κ‖L2(ds)

) √
Gc(ct, ct)∥∥∥∥∂t

(
(Ds log |c′|)

√
|c′|

)∥∥∥∥
L2(dθ)

.c0,N

(
1 + ‖Ds log |c′|‖L2(ds)

) √
Gc(ct, ct) .

For the second estimate we used the boundedness of ‖κ‖L2(ds) from (10). This
concludes the proof of step 1 for k = 0.

Now consider k > 0 and assume that the theorem has been shown for k − 1.
Along c(t, θ) the following objects are bounded

• `c by Cor. 4.2, allowing us to use Poincaré inequalities,

• ‖Dk−1
s κ‖L2(ds) and ‖Dk

s log |c′|‖L2(ds) by induction, and

• ‖D j
sκ‖L∞ and ‖D j+1

s log |c′|‖L∞ for 0 ≤ j ≤ k − 2 via Poincaré inequalities.

We also have the following bounds, which are valid for both v and n:

• ‖D j
s〈Dsct, v〉‖L2(ds) .c0,N

√
Gc(ct, ct) for 0 ≤ j ≤ k .

This is clear for j ≤ k − 1, since the highest derivative of κ that appears
due to the Frenet equations is Dk−2

s κ and thus all terms involving κ can be
bounded by the L∞-norm. For j = k we have

Dk
s〈Dsct, v〉 = 〈Dsct,Dk

sv〉 +
k∑

j=1

(
k
j

)
〈D j+1

s ct,D
k− j
s v〉
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and
Dk

sv = (Dk−1
s κ)n + lower order derivatives in κ .

Thus
‖Dk

sv‖L2(ds) ≤ ‖Dk−1
s κ‖L2(ds) + · · · .c0,N 1 .

Hence we get

‖Dk
s〈Dsct, v〉‖L2(ds) ≤ ‖Dsct‖L∞‖Dk

sv‖L2(ds) +

k∑
j=1

(
k
j

)
‖D j+1

s ct‖L2(ds)‖D
k− j
s v‖L∞

.c0,N
√

Gc(ct, ct) .

• ‖Dk+1
s 〈Dsct, v〉‖L2(ds) .c0,N (1 + ‖Dk

sκ‖L2(ds))
√

Gc(ct, ct) .

We obtain this bound from

Dk+1
s 〈Dsct, v〉 = 〈Dk+2

s ct, v〉 + 〈Dsct,Dk+1
s v〉 +

k∑
j=1

(
k + 1

j

)
〈Dk+2− j

s ct,D
j
sv〉 .

Taking the L2(ds)-norm we get

‖Dk+1
s 〈Dsct, v〉‖L2(ds) ≤ ‖Dk+2

s ct‖L2(ds) + ‖Dsct‖L∞‖Dk+1
s v‖L2(ds)+

+

k∑
j=1

(
k + 1

j

)
‖Dk+2− j

s ct‖L2(ds)‖D
j
sv‖L∞

.c0,N
√

Gc(ct, ct) +
(
1 + ‖Dk

sκ‖L2(ds)

) √
Gc(ct, ct) +

√
Gc(ct, ct) ,

thus showing the claim.

Equation (8) from Lem. 4.6, rewritten for κ, is

Dc,h

(
Dk

sκ
)

= Dk+1
s 〈Dsh, n〉 −

k∑
j=0

(
k + 1
j + 1

) (
Dk− j

s κ
)

D j
s〈Dsh, v〉 .

Thus we get

∂t

(
(Dk

sκ)
√
|c′|

)
= (Dk+1

s 〈Dsct, n〉)
√
|c′| − (k + 1

2 )(Dk
sκ) 〈Dsct, v〉

√
|c′| −

−

(
k + 1

2

) (
Dk−1

s κ
)

(Ds〈Dsct, v〉)
√
|c′| −

k∑
j=2

(
k + 1
j + 1

) (
Dk− j

s κ
)

D j
s〈Dsct, v〉

√
|c′| ,
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and hence, by taking norms,∥∥∥∥∂t((Dk
sκ)

√
|c′|)

∥∥∥∥
L2(dθ)

≤
∥∥∥Dk+1

s 〈Dsct, n〉
∥∥∥

L2(ds) + (k + 1
2 )

∥∥∥Dk
sκ

∥∥∥
L2(ds)

∥∥∥∥〈Dsct, v〉
∥∥∥∥

L∞

+

(
k + 1

2

) ∥∥∥Dk−1
s κ

∥∥∥
L2(ds)

∥∥∥∥Ds〈Dsct, v〉
∥∥∥∥

L∞

+

k∑
j=2

(
k + 1
j + 1

) ∥∥∥∥Dk− j
s κ

∥∥∥∥
L∞

∥∥∥∥D j
s〈Dsct, v〉

∥∥∥∥
L2(ds)

.c0,N

(
1 + ‖Dk

sκ‖L2(ds)

) √
Gc(ct, ct) .

For (Dk+1
s log |c′|)

√
|c′| we proceed similarly. The time derivative is

∂t((Dk+1
s log |c′|)

√
|c′|) = Dk+1

s 〈Dsct, v〉
√
|c′|−

− (k + 1
2 )(Dk+1

s log |c′|) 〈Dsct, v〉
√
|c′|

−

(
k + 1

2

) (
Dk

s log |c′|
)

Ds〈Dsct, v〉
√
|c′|

−

k∑
j=2

(
k + 1
j + 1

) (
Dk+1− j

s log |c′|
)

D j
s〈Dsct, v〉

√
|c′| ,

which can be estimated by∥∥∥∥∂t
(
(Dk+1

s log |c′|)
√
|c′|

)∥∥∥∥
L2(dθ)

≤
∥∥∥Dk+1

s 〈Dsct, v〉
∥∥∥

L2(ds) + (k + 1
2 )

∥∥∥Dk+1
s log |c′|

∥∥∥
L2(ds)

∥∥∥∥Dsct

∥∥∥∥
L∞

+

(
k + 1

2

) ∥∥∥Dk
s log |c′|

∥∥∥
L2(ds)

∥∥∥∥Ds〈Dsct, v〉
∥∥∥∥

L∞

+

k∑
j=2

(
k + 1
j + 1

) ∥∥∥∥Dk+1− j
s log |c′|

∥∥∥∥
L∞

∥∥∥∥D j
s〈Dsct, v〉

∥∥∥∥
L2(ds)

.c0,N

(
1 + ‖Dk+1

s log |c′|‖L2(ds)

) √
Gc(ct, ct) .

Step 2. The proof of this step depends only on the estimates (11) and (12).
We have a path c(t, θ) between c1 and c2. We write again Dc1 and Dc(t) for Dsc1
and Dsc(t) , respectively. Define the functions

A(t) =

∥∥∥∥∥(Dk
c1
κ1)

√
|c′1| − (Dk

c(t)κ(t))
√
|c(t)′|

∥∥∥∥∥
L2(dθ)

(13)

B(t) =

∥∥∥∥∥(Dk+1
c1

log |c′1|)
√
|c′1| − (Dk+1

c(t) log |c(t)′|)
√
|c(t)′|

∥∥∥∥∥
L2(dθ)

. (14)
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From

(Dk
cκ)

√
|c′|(t, θ) − (Dk

c1
κ1)

√
|c′1|(θ) =

∫ t

0
∂t(Dk

sκ)
√
|c′|)(τ, θ) dτ

we get, by taking norms,

A(t) ≤
∫ t

0

∥∥∥∥∂t(Dk
sκ

√
|c′|)

∥∥∥∥
L2(dθ)

dτ

.c0,N

∫ t

0

(
1 + ‖Dk

sκ‖L2(ds)

) √
Gc(ct, ct) dτ

.c0,N

∫ t

0

(
1 + ‖Dk

sκ1‖L2(ds) + A(τ)
) √

Gc(ct, ct) dτ .

Now we use Gronwall’s inequality, Cor. 2.11, to obtain

A(t) .c0,N

(
1 + ‖Dk

sκ1‖L2(ds)

) ∫ t

0

√
Gc(ct, ct) dτ .

Taking the infimum over all paths and evaluating at t = 1 then yields almost the
desired inequality∥∥∥∥∥(Dk

c1
κ1)

√
|c′1| − (Dk

c2
κ2)

√
|c′2|

∥∥∥∥∥
L2(dθ)

.c0,N

(
1 + ‖Dk

sκ1‖L2(ds)

)
distG(c1, c2) . (15)

To bound ‖Dk
sκ1‖L2(ds), which appears on the right hand side, we apply (15) with

c2 = c0.

‖Dk
sκ1‖L2(ds) ≤

∥∥∥∥∥Dk
c1

(κ1)
√
|c′1| − Dk

c0
(κ0)

√
|c′0|

∥∥∥∥∥
L2(dθ)

+ ‖Dk
sκ0‖L2(ds)

.c0,N

(
1 + ‖Dk

sκ0‖L2(ds)

)
distG(c0, c1) + ‖Dk

sκ0‖L2(ds) .c0,N 1 .

This concludes the proof for (Dk
sκ)
√
|c′|. For (Dk+1

s log |c′|)
√
|c′| proceed in the

same way with B(t) in place of A(t) using the estimate (12).

Remark 4.8. Theorem 4.7 makes no statement about the continuity or local
Lipschitz continuity of the function log |c′|

√
|c′|, when G is a Sobolev metric of

order 1. In fact it appears that one needs a metric of order n ≥ 2. In that case one
can use the variational formula

Dc,h

(
log |c′|

√
|c′|

)
=

(
1 + 1

2 log |c′|
)
〈Dsh, v〉

√
|c′| ,

and the same method of proof – with n ≥ 2 one can estimate 〈Dsh, v〉 using the
L∞-norm – to show that,(

log |c′|
) √
|c′| : (Imm(S 1,R2), distG)→ L2(S 1,R2)

is continuous and Lipschitz continuous on every metric ball.
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Remark 4.9. In a similar way we can also obtain continuity in L∞ instead of
L2. Assume the metric satisfies (9) with n ≥ 3. Then for all 1 ≤ k ≤ n − 2 the
functions

Dk−1
s κ : (Imm(S 1,R2), distG)→ L∞(S 1,R)

Dk
s log |c′| : (Imm(S 1,R2), distG)→ L∞(S 1,R)

are continuous and Lipschitz continuous on every metric ball. To prove this we
follow the proof of Thm. 4.7 and replace the estimates (11), (12) with∥∥∥∂t

(
Dk−1

s κ
)∥∥∥

L∞ .c0,N

(
1 + ‖Dk−1

s κ‖L∞
) √

Gc(ct, ct)∥∥∥∂t
(
Dk

s log |c′|
)∥∥∥

L∞ .c0,N

(
1 + ‖Dk

s log |c′|‖L∞
) √

Gc(ct, ct) ,

which can be established in the same way.
We also have L∞-continuity of log |c′|, when n = 2. Since we will use it in

the proof of geodesic completeness, we shall provide an explicit proof in Lem.
4.10.

Lemma 4.10. Let the metric G on Imm(S 1,R2) satisfy∫
S 1
|h|2 + |Dn

sh|2 ds ≤ A Gc(h, h) ,

for some n ≥ 2 and some A > 0. Given c0 ∈ Imm(S 1,R2) and N > 0, there
exists a constant C = C(c0,N) such that for all c1, c2 ∈ Imm(S 1,R2) with
distG(c0, ci) < N we have∥∥∥log |c′1| − log |c′2|

∥∥∥
L∞ ≤ C distG(c1, c2) .

In particular the function

log |c′| : (Imm(S 1,R2), distG)→ L∞(S 1,R)

is continuous and Lipschitz continuous on every metric ball.

Proof. Fix θ ∈ S 1 and c1 ∈ Imm(S 1,R2) satisfying distG(c0, c1) < N and let
c(t, θ) be a path between c0 and c1 with LenG(c) ≤ 2N. Then

∂t
(
log |c′(θ)|

)
= 〈Dsct(θ), v(θ)〉 .

After integrating and taking norms we get∣∣∣log |c′1(θ)| − log |c′0(θ)|
∣∣∣ ≤ ∫ 1

0
|Dsct(t, θ)| dt .
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Using Poincaré inequalities and Cor. 4.2 we can estimate

|Dsct(θ)| ≤
√
`c

2
‖D2

sct‖L2(ds) ≤

≤

√
`c

2

√
‖ct‖

2
L2(ds) + ‖Dn

sct‖
2
L2(ds) ≤

1
2

√
`cA

√
Gc(ct, ct) . (16)

Thus by taking the infimum over all paths between c0 and c1 we get∥∥∥log |c′1| − log |c′0|
∥∥∥

L∞ .c0,N distG(c0, c1) .

Remark. An explicit value for the constant is given by

C(c0,N) = 1
2

√
A

( √
`c0 + 1

2

√
AN

)
.

This can be found by combining the estimates (16) and (6).

This corollary gives us upper and lower bounds on |c′(θ)| in terms of the
geodesic distance. Therefore, a geodesic c(t, θ) for a Sobolev metric with order
at least 2 cannot leave Imm(S 1,R2) by having c′(t, θ) = 0 for some (t, θ).

Corollary 4.11. Under the assumptions of Lem. 4.10, given c0 ∈ Imm(S 1,R2)
and N > 0, there exists a constant C = C(c0,N), such that

‖c′‖L∞ ≤ C and
∥∥∥∥∥ 1
|c′|

∥∥∥∥∥
L∞
≤ C

hold for all c ∈ Imm(S 1,R2) with distG(c0, c) < N.

Proof. By Lem. 4.10 we have

‖ log |c′(θ)| ≤ ‖ log |c′0(θ)| +
∥∥∥log |c′| − log |c′0|

∥∥∥
L∞ .c0,N 1 .

Now apply exp and take the supremum over θ to obtain ‖c′‖L∞ .c0,N 1. Similarly
by starting from

−‖ log |c′(θ)| ≤ −‖ log |c′0(θ)| +
∥∥∥log |c′| − log |c′0|

∥∥∥
L∞ .c0,N 1 .

we obtain the bound
∥∥∥|c′|−1

∥∥∥ .c0,N .

Remark. Using the explicit constant for Lem. 4.10, we can obtain the following
more explicit inequalities,

|c′(θ)| ≤ |c′0(θ)| exp
(

1
2

√
AN

( √
`c0 + 1

2

√
AN

))
|c′(θ)|−1 ≤ |c′0(θ)|−1 exp

(
1
2

√
AN

( √
`c0 + 1

2

√
AN

))
.

for Cor. 4.11.

Remark 4.12. To simplify the exposition, the results in this section were
formulated on the space Imm(S 1,R2) of smooth immersions. If G is a Sobolev
metric of order n with n ≥ 2, we can replace Imm(S 1,R2) by Immn(S 1,R2) in
all statements of this section with the same proofs.
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5. Geodesic Completeness for Sobolev Metrics

On the space Hn(S 1,Rd) we have two norms: the Hn(dθ)-norm as well as
the Hn(ds)-norm, which depends on the choice of a curve c ∈ Imm(S 1,R2).
Although the norms are equivalent, the constant in the inequality

C−1‖h‖Hk(dθ) ≤ ‖h‖Hk(ds) ≤ C‖h‖Hk(dθ) ,

depends in general on the curve and its derivatives. The next lemma shows,
that if c remains in a metric ball with respect to the geodesic distance, then the
constant depends only on the center and the radius of the ball.

Lemma 5.1. Let the metric G on Imm(S 1,R2) satisfy∫
S 1
|h|2 + |Dn

sh|2 ds ≤ A Gc(h, h)

for some n ≥ 2 and some A > 0. Given c0 ∈ Imm(S 1,R2) and N > 0, there exists
a constant C = C(c0,N) such that for 0 ≤ k ≤ n,

C−1‖h‖Hk(dθ) ≤ ‖h‖Hk(ds) ≤ C‖h‖Hk(dθ) ,

holds for all c ∈ Imm(S 1,R2) with distG(c0, c) < N and all h ∈ Hk(S 1,Rd).

Proof. By definition,

‖u‖2Hk(dθ) = ‖h‖2L2(dθ) + ‖∂k
θh‖

2
L2(dθ)

‖u‖2Hk(ds) = ‖h‖2L2(ds) + ‖Dk
sh‖

2
L2(ds) .

The estimates (
min
θ∈S 1
|c′(θ)|

)
‖h‖2L2(dθ) ≤ ‖h‖

2
L2(ds) ≤ ‖c

′‖L∞‖h‖2L2(dθ) ,

together with Cor. 4.11 take care of the L2-terms. Thus it remains to compare the
derivatives ‖∂k

θh‖
2
L2(dθ) and ‖Dk

sh‖
2
L2(ds). From the identities

h′ = |c′|Dsh

h′′ = |c′|2D2
sh + (∂θ|c′|)Dsh

h′′′ = |c′|3D3
sh + 3 |c′|(∂θ|c′|)D2

sh + (∂2
θ |c
′|)Dsh

h′′′′= |c′|4D4
sh + 6 |c′|2(∂θ|c′|)D3

sh +
(
3
(
∂θ|c′|

)2
+ 4 |c′|(∂2

θ |c
′|)

)
D2

sh + (∂3
θ |c
′|)Dsh ,

we generalize to

∂k
θh =

k∑
j=1

∑
α∈A j

c j,α

k−1∏
i=0

(
∂i
θ|c
′|
)αi

D j
sh , (17)
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where c j,α are some constants and α = (α0, . . . , αk−1) are multi-indices that are
summed over the index sets

A j =

α :
k−1∑
i=0

iαi = k − j,
k−1∑
i=0

αi = j

 .

Equation (17) is related to Faà di Bruno’s formula [10] and can be proven by
induction.

The length `c is bounded on the metric ball by Cor. 4.2. Then Lem. 4.7
together with Poincaré inequalities shows that

• ‖Dn−1
s log |c′|‖L2(ds) and

• ‖Dk
s log |c′|‖L∞ for 1 ≤ k ≤ n − 2

are bounded as well. Repeated application of the chain rule for differentiation
yields

Dk
s |c
′| = Dk

s
(
exp log |c′|

)
= |c′|Dk

s log |c′| + lower Ds-derivatives of log |c′| .

Thus also ‖Dn−1
s |c

′|‖L2(ds) and ‖Dk
s |c
′|‖L∞ for 1 ≤ k ≤ n − 2 are bounded on metric

balls. Next we apply formula (17) to h = |c′| obtaining

∂k
θ |c
′| = |c′|kDk

s |c
′| + lower Ds-derivatives of |c′| . (18)

Together with Lem. 4.10 this implies that

• ‖∂n−1
θ |c

′|‖L2(dθ) and

• ‖∂k
θ |c
′|‖L∞ for 0 ≤ k ≤ n − 2

are bounded on metric balls.
We proceed by induction over k. The case k = 0 has been dealt with at the

beginning of the proof. Assume k ≤ n − 1 and the equivalence of the norms
has been shown for k − 1. Then the highest derivative of |c′| is ∂k−1

θ |c
′| and so in

(17) we can estimate every term involving |c′| using the L∞-norm. Thus using
Poincaré inequalities and the equivalence of L2(dθ) and L2(ds)-norms we get

‖∂k
θh‖

2
L2(dθ) .c0,N ‖D

k
sh‖

2
L2(ds) .

For the other inequality write

Dk
sh = |c′|−k ∂k

θh − |c
′|−k

k−1∑
j=1

∑
α∈A j

c j,α

k−1∏
i=0

(
∂i
θ|c
′|
)αi

D j
sh ,

and use the induction assumption ‖D j
sh‖2L2(ds) .c0,N ‖∂

j
θh‖

2
L2(dθ) for 0 ≤ j < k.
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The only remaining case is k = n. There we have to be a bit more careful,
since then ∂n−1

θ |c
′| appears in (17), which cannot be bound using the L∞-norm.

However ∂n−1
θ |c

′| appears only in the summand
(
∂n−1
θ |c

′|
)

Dsh, i.e. if αn−1 , 0,
then αn−1 = 1, αi = 0 for i , n − 1 and α ∈ A1. This term we can estimate via∥∥∥∥(∂n−1

θ |c
′|
)

Dsh
∥∥∥∥

L2(dθ)
≤

∥∥∥∂n−1
θ |c

′|
∥∥∥

L2(dθ) ‖Dsh‖L∞ ,

and then depending on which direction we want to estimate, we can use either of

‖Dsh‖L∞ ≤ 2−1
√
`c

∥∥∥D2
sh

∥∥∥
L2(ds)

‖Dsh‖L∞ ≤
∥∥∥|c′|−1

∥∥∥
L∞ ‖∂θh‖L∞ ≤ C

∥∥∥|c′|−1
∥∥∥

L∞

∥∥∥∂2
θh

∥∥∥
L2(dθ) .

From here we proceed as for k < n.

We saw in Lem. 2.5 that multiplication is a bounded bilinear map on the
spaces Hk(S 1,Rd) with the Hk(dθ)-norm. Since the Hk(dθ)-norm and the
Hk(ds)-norm are equivalent, this holds also for the Hk(ds)-norm. A consequence
of Lem. 5.1 is that the constant in the inequality

‖〈 f , g〉‖Hk(ds) ≤ C‖ f ‖Hk(ds)‖g‖Hk(ds) ,

again depends only on the center and radius of the geodesic ball.

Corollary 5.2. Under the assumptions of Lem. 5.1 there exists a constant
C = C(c0,N) such that for c ∈ Imm(S 1,R2) with distG(c0, c) < N and 1 ≤ k ≤ n,

‖〈 f , g〉‖Hk(ds) ≤ C‖ f ‖Hk(ds)‖g‖Hk(ds) ,

holds for all f , g ∈ Hk(S 1,Rd).

Proof. We use Lem. 5.1 and the boundedness of multiplication on Hk(dθ),

‖〈 f , g〉‖Hk(ds) .c0,N ‖〈 f , g〉‖Hk(dθ)

.c0,N ‖ f ‖Hk(dθ)‖g‖Hk(dθ) .c0,N ‖ f ‖Hk(ds)‖g‖Hk(ds) .

This last lemma shows that the identity

Id :
(
(Immn(S 1,R2), distG

)
→

(
Hn(S 1,R2),Hn(dθ)

)
maps bounded sets to bounded sets and that the same holds for the function(

(Immn(S 1,R2), distG
)
→ R , c 7→ ‖c‖Hn(ds) ,

when G is stronger than a Sobolev metric of order n.
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Lemma 5.3. Let the metric G on Imm(S 1,R2) satisfy∫
S 1
|h|2 + |Dn

sh|2 ds ≤ A Gc(h, h)

for some n ≥ 2 and some A > 0. Given c0 ∈ Imm(S 1,R2) and N > 0, there exists
a constant C = C(c0,N), such that

‖c‖Hn(dθ) ≤ C , ‖c‖Hn(ds) ≤ C ,

hold for all c ∈ Imm(S 1,R2) with distG(c0, c) < N.

Proof. It is only necessary to prove the boundedness in one of the norms, since
Lem. 5.1 will imply the other one. We have

‖c‖2Hn(ds) = ‖c‖2L2(ds) + ‖Dn
sc‖2L2(ds) = ‖c‖2L2(ds) + ‖Dn−2

s κ‖2L2(ds) .

The boundedness of ‖Dn−2
s κ‖2L2(ds) on metric balls has been shown in Thm. 4.7.

For ‖c‖L2(ds) we choose a path c(t) from c0 to c = c(1) with LenG(c(t)) < 2N.
Then

‖c‖L2(ds) .c0,N ‖c‖L2(dθ) ≤ ‖c − c0‖L2(dθ) + ‖c0‖L2(dθ)

.c0,N

∥∥∥∥∥∥
∫ 1

0
∂tc(t) dt

∥∥∥∥∥∥
L2(dθ)

≤

∫ 1

0
‖∂tc(t)‖L2(dθ) dt

.c0,N

∫ 1

0
‖∂tc(t)‖L2(ds) dt ≤ LenG(c(t)) .c0,N 1.

Remark 5.4. The proof of Lem. 5.1 shows that under the assumptions of Lem.
5.3 we can choose C = C(c0,N) such that the additional inequality∥∥∥|c′|∥∥∥Hn−1(dθ) ≤ C ,

holds as well.

Now we are ready to prove the main theorem.

Theorem 5.5. Let n ≥ 2 and let G be a Sobolev metric with constant coefficients
ai ≥ 0 of order n and a0, an > 0. Given (c0, u0) ∈ T Immn(S 1,R2) the solution
of the geodesic equation for the metric G with initial values (c0, u0) exists for all
time.

Corollary 5.6. Let the metric G be as in Thm. 5.5. Then the Riemannian
manifolds (Immn(S 1,R2),G) and Imm(S 1,R2),G) are geodesically complete.
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Proof. The geodesic completeness of Imm(S 1,R2) follows from Thm. 3.7, since
given smooth initial conditions the intervals of existence are uniform in the
Sobolev order.

Proof of Theorem 5.5. The geodesic equation is equivalent to the following ODE
on (T Immn)′ � Immn ×H−n,

ct = L̄−1
c p

pt = 1
2 Hc

(
L̄−1

c p, L̄−1
c p

)
,

with p(t) = L̄c(t)u(t). Fix initial conditions (c(0), p(0)). In order to show that the
geodesic with these initial conditions exists for all time, we need to show that on
any finite interval [0,T ), on which the geodesic (c(t), p(t)) exists, we have that

(A) the closure of c([0,T )) in Hn(S 1,R2) is contained in Immn(S 1,R2) and,

(B)
∥∥∥L̄−1

c p
∥∥∥

Hn(dθ),
1
2

∥∥∥Hc(L̄−1
c p, L̄−1

c p)
∥∥∥

H−n(dθ) are bounded on [0,T ).

Then we can apply [8, Thm. 10.5.5] to conclude that [0,T ) is not the maximal
interval of existence. Since this holds for every T , the geodesic must exist on
[0,∞).

Assume now that T > 0 is fixed. We will pass freely between the momentum
and the velocity via u(t) = L̄−1

c(t) p(t). Since c(t) is a geodesic, we have

distG(c0, c(t)) ≤
√

Gc(0)(u(0), u(0)) T and Gc(t)(u(t), u(t)) = Gc(0)(u(0), u(0)) .

In particular the geodesic remains in a metric ball around c0. It follows from Cor.
4.11 that there exists a C > 0 with |c′(t, θ)| ≥ C for (t, θ) ∈ [0,T ) × S 1. Since the
set {c : |c′(θ)| ≥ C} is H2-closed – and hence also Hn-closed – in Immn(S 1,R2),
we can conclude that condition (A) is satisfied.

The first part of condition (B) follows easily from∥∥∥L̄−1
c p

∥∥∥2
Hn(dθ) = ‖u‖2Hn(dθ) .c0,T ‖u‖

2
Hn(ds) ≤

≤ max(a−1
0 , a−1

n )Gc(u, u) = max(a−1
0 , a−1

n )Gc(0)(u(0), u(0)) ,

using Lem. 5.1 and that the velocity is constant along a geodesic.
It remains to show that ‖Hc(u, u)‖H−n(dθ) remains bounded along c(t). To

estimate this norm, pick m ∈ Hn(dθ) and consider the pairing

〈Hc(u, u),m〉H−n×Hn = Dc,mGc(u, u) =

∫
S 1

n∑
k=0

ak〈Dk
su,D

k
su〉〈Dsm, v〉 ds−

− 2
n∑

k=1

k∑
j=1

ak〈Dk
su,D

k− j
s

(
〈Dsm, v〉D

j
su

)
〉 ds .
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Using Poincaré inequalities, Lem. 5.1, and that `c is bounded along c(t), we can
estimate the first term,∣∣∣∣∣∣∣

∫
S 1

n∑
k=0

ak〈Dk
su,D

k
su〉〈Dsm, v〉 ds

∣∣∣∣∣∣∣ ≤ ‖Dsm‖L∞ Gc(u, u)

.c0,T ‖m‖Hn(ds) .c0,T ‖m‖Hn(dθ) .

For the second term we additionally need Cor. 5.2. For each 1 ≤ k ≤ n and
1 ≤ j ≤ k we have,∣∣∣∣∣ ∫

S 1

〈
Dk

su,D
k− j
s

(
〈Dsm, v〉D

j
su

)〉
ds

∣∣∣∣∣ ≤ ∥∥∥Dk
su

∥∥∥
L2(ds)

∥∥∥∥Dk− j
s

(
〈Dsm, v〉D

j
su

)∥∥∥∥
L2(ds)

≤ ‖u‖Hk(ds)

∥∥∥∥〈Dsm, v〉D
j
su

∥∥∥∥
Hk− j(ds)

.c0,T ‖u‖Hk(ds)‖Dsm‖Hk− j(ds)‖v‖Hk− j(ds)‖D
j
su‖Hk− j(ds)

.c0,T ‖u‖
2
Hn(ds)‖c‖Hn(ds)‖m‖Hn(ds) .

We know that ‖u‖2Hn(ds) is bounded along c(t) and using Lem. 5.3 we see that
‖c‖Hn(ds) is bounded as well. Hence we obtain

|〈Hc(u, u),m〉H−n×Hn | .c0,T ‖m‖Hn(dθ) ,

which implies
‖Hc(u, u)‖H−n(dθ) .c0,T 1 ,

i.e., ‖Hc(u, u)‖H−n(dθ) is bounded along the geodesic.

Remark 5.7. If G is a Sobolev-type metric of order n ≥ 2 with a0 = 0, a1 = 0,
then G is a Riemannian metric on the space Imm(S 1,R2)/Tra of plane curves
modulo translations. We will show that for these metrics it is possible to blow
up circles to infinity along geodesics in finite time, making them geodesically
incomplete. Thus a non-vanishing zero or first order term is necessary for
geodesic completeness.

The 1-dimensional submanifold consisting of all concentric circles, which
are parametrized by constant speed, is a geodesic with respect to the metric,
because Sobolev-type metrics are invariant under the motion group. Let c(t, θ) =
r(t) (cos θ, sin θ). Then ct(t, θ) = rt(t) (cos θ, sin θ) and |c′(t, θ)| = r(t). Thus

Gc(ct, ct) = 2π
n∑

j=2

a jr(t)1−2 jrt(t)2 ,

and the length of the curve is

LenG(c) =

∫ 1

0

√√
2π

n∑
j=2

a jr(t)1−2 jrt(t)2 dt =
√

2π
∫ r(1)

r(0)

√√ n∑
j=2

a jσ1−2 j dσ .

Since the integral converges for r(1) → ∞, it follows that the path consisting of
growing circles can reach infinity with finite length.
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