41,276 research outputs found
molecular ions can exist in strong magnetic fields
Using the variational method it is shown that for magnetic fields G there can exist a molecular ion .Comment: LaTeX, 7 pp, 1 table, 4 figures. Title modified. Consideration of the
longitudinal size of the system was adde
General-relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars
We analyze the coupling between the internal degrees of freedom of neutron
stars in a close binary, and the stars' orbital motion. Our analysis is based
on the method of matched asymptotic expansions and is valid to all orders in
the strength of internal gravity in each star, but is perturbative in the
``tidal expansion parameter'' (stellar radius)/(orbital separation). At first
order in the tidal expansion parameter, we show that the internal structure of
each star is unaffected by its companion, in agreement with post-1-Newtonian
results of Wiseman (gr-qc/9704018). We also show that relativistic interactions
that scale as higher powers of the tidal expansion parameter produce
qualitatively similar effects to their Newtonian counterparts: there are
corrections to the Newtonian tidal distortion of each star, both of which occur
at third order in the tidal expansion parameter, and there are corrections to
the Newtonian decrease in central density of each star (Newtonian ``tidal
stabilization''), both of which are sixth order in the tidal expansion
parameter. There are additional interactions with no Newtonian analogs, but
these do not change the central density of each star up to sixth order in the
tidal expansion parameter. These results, in combination with previous analyses
of Newtonian tidal interactions, indicate that (i) there are no large
general-relativistic crushing forces that could cause the stars to collapse to
black holes prior to the dynamical orbital instability, and (ii) the
conventional wisdom with respect to coalescing binary neutron stars as sources
of gravitational-wave bursts is correct: namely, the finite-stellar-size
corrections to the gravitational waveform will be unimportant for the purpose
of detecting the coalescences.Comment: 22 pages, 2 figures. Replaced 13 July: proof corrected, result
unchange
Octet baryon magnetic moments from QCD sum rules
A comprehensive study is made for the magnetic moments of octet baryons in
the method of QCD sum rules. A complete set of QCD sum rules is derived using
the external field method and generalized interpolating fields. For each
member, three sum rules are constructed from three independent tensor
structures. They are analyzed in conjunction with the corresponding mass sum
rules. The performance of each of the sum rules is examined using the criteria
of OPE convergence and ground-state dominance, along with the role of the
transitions in intermediate states. Individual contributions from the u, d and
s quarks are isolated and their implications in the underlying dynamics are
explored. Valid sum rules are identified and their predictions are obtained.
The results are compared with experiment and previous calculations.Comment: 21 pages, 11 figures, 6 figures; added a reference, minor change in
tex
CFD analysis of jet mixing in low NOx flametube combustors
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated
Post-Newtonian Models of Binary Neutron Stars
Using an energy variational method, we calculate quasi-equilibrium
configurations of binary neutron stars modeled as compressible triaxial
ellipsoids obeying a polytropic equation of state. Our energy functional
includes terms both for the internal hydrodynamics of the stars and for the
external orbital motion. We add the leading post-Newtonian (PN) corrections to
the internal and gravitational energies of the stars, and adopt hybrid orbital
terms which are fully relativistic in the test-mass limit and always accurate
to PN order. The total energy functional is varied to find quasi-equilibrium
sequences for both corotating and irrotational binaries in circular orbits. We
examine how the orbital frequency at the innermost stable circular orbit
depends on the polytropic index n and the compactness parameter GM/Rc^2. We
find that, for a given GM/Rc^2, the innermost stable circular orbit along an
irrotational sequence is about 17% larger than the innermost secularly stable
circular orbit along the corotating sequence when n=0.5, and 20% larger when
n=1. We also examine the dependence of the maximum neutron star mass on the
orbital frequency and find that, if PN tidal effects can be neglected, the
maximum equilibrium mass increases as the orbital separation decreases.Comment: 53 pages, LaTex, 9 figures as 10 postscript files, accepted by Phys.
Rev. D, replaced version contains updated reference
Innermost Stable Circular Orbit of Inspiraling Neutron-Star Binaries: Tidal Effects, Post-Newtonian Effects and the Neutron-Star Equation of State
We study how the neutron-star equation of state affects the onset of the
dynamical instability in the equations of motion for inspiraling neutron-star
binaries near coalescence. A combination of relativistic effects and Newtonian
tidal effects cause the stars to begin their final, rapid, and
dynamically-unstable plunge to merger when the stars are still well separated
and the orbital frequency is 500 cycles/sec (i.e. the gravitational
wave frequency is approximately 1000 Hz). The orbital frequency at which the
dynamical instability occurs (i.e. the orbital frequency at the innermost
stable circular orbit) shows modest sensitivity to the neutron-star equation of
state (particularly the mass-radius ratio, , of the stars). This
suggests that information about the equation of state of nuclear matter is
encoded in the gravitational waves emitted just prior to the merger.Comment: RevTeX, to appear in PRD, 8 pages, 4 figures include
Human African trypanosomiasis : the current situation in endemic regions and the risks for non-endemic regions from imported cases
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei
gambiense and T. b. rhodesiense and caused devastating epidemics during the 20th
century. Due to effective control programs implemented in the last two decades, the
number of reported cases has fallen to a historically low level. Although fewer than
977 cases were reported in 2018 in endemic countries, HAT is still a public health
problem in endemic regions until it is completely eliminated. In addition, almost 150
confirmed HAT cases were reported in non-endemic countries in the last three
decades. The majority of non-endemic HAT cases were reported in Europe, United
States and South Africa, due to historical alliances, economic links or geographic
proximity to disease endemic countries. Furthermore, with the implementation of the
âBelt and Roadâ project, sporadic imported HAT cases have been reported in China
as a warning sign of tropical diseases prevention. In this paper, we explore and
interpret the data on HAT incidence and find no positive correlation between the
number of HAT cases from endemic and non-endemic countries.This data will
provide useful information for better understanding the imported cases of HAT
globally in the post-elimination phase
- âŠ