15 research outputs found

    Persistence of Environmental DNA in Freshwater Ecosystems

    Get PDF
    The precise knowledge of species distribution is a key step in conservation biology. However, species detection can be extremely difficult in many environments, specific life stages and in populations at very low density. The aim of this study was to improve the knowledge on DNA persistence in water in order to confirm the presence of the focus species in freshwater ecosystems. Aquatic vertebrates (fish: Siberian sturgeon and amphibian: Bullfrog tadpoles) were used as target species. In control conditions (tanks) and in the field (ponds), the DNA detectability decreases with time after the removal of the species source of DNA. DNA was detectable for less than one month in both conditions. The density of individuals also influences the dynamics of DNA detectability in water samples. The dynamics of detectability reflects the persistence of DNA fragments in freshwater ecosystems. The short time persistence of detectable amounts of DNA opens perspectives in conservation biology, by allowing access to the presence or absence of species e.g. rare, secretive, potentially invasive, or at low density. This knowledge of DNA persistence will greatly influence planning of biodiversity inventories and biosecurity surveys

    Prediction of paravalvular leakage after transcatheter aortic valve implantation

    Get PDF
    Significant paravalvular leakage (PVL) after transcatheter aortic valve implantation (TAVI) is related to patient mortality. Predicting the development of PVL has focused on computed tomography (CT) derived variables but literature targeting CoreValve devices is limited, controversial, and did not make use of standardized echocardiographic methods. The study included 164 consecutive patients with severe aortic stenosis that underwent TAVI with a Medtronic CoreValve system©, with available pre-TAVI CT and pre-discharge transthoracic echocardiography. The predictive value for significant PVL of the CT-derived Agatston score, aortic annulus size and eccentricity, and “cover index” was assessed, according to both echocardiographic Valve Academic Research Consortium (VARC) criteria and angiographic Sellers criteria. Univariate predictors for more than mild PVL were the maximal diameter of the aortic annulus size (for both angiographic and echocardiographic assessment of PVL), cover index (for echocardiographic assessment of PVL only), and Agatston score (for both angiographic and echocardiographic assessment of PVL). The aortic annulus eccentricity index was not predicting PVL. At multivariate analysis, Agatston score was the only independent predictor for both angiographic and echocardiographic assessment of PVL. Agatston score is the only independent predictor of PVL regardless of the used imaging technique for the definition of PVL

    An objective and reproducible method for quantification of aortic regurgitation after TAVI

    No full text
    Aims: We describe a new semi-automated method that measures aortic regurgitation (AR) on contrast aortography with the objectives of reducing the inter-observer variability and standardising image acquisition. Methods and results: Aortograms from three participating centres were reviewed to generate the following quality criteria: entire left ventricle and aortic root in view, descending aorta or TOE probe not over-projected, breath hold, no table motion, and adequate contrast opacification of the aortic root. AR was visually graded (Sellers) and was quantified by measuring the area under time-contrast density curves in the aortic root (reference) and the left ventricle. Quality criteria were met in 44 retrospectively identified aortograms and in 22 (69%) of 32 prospectively collected aortograms. The visual AR grade (Sellers) was highly correlated with time-density measurements including relative area under the curve (RAUC) and qRA index (r=0.81 and 0.83, respectively, p<0.001). Inter-observer reproducibility of visual grading was moderate (kappa 0.47-0.60, p<0.001). Inter-observer measurement of RAUC and qRA index were highly correlated (r=0.98, p<0.001) and showed a high level of agreement. Conclusions: Quantification of aortic regurgitation by measurement of time-density changes on contrast aortography may improve the reproducibility of AR assessment in the catheter laboratory. Steps for standardised aortography acquisition are proposed
    corecore