45 research outputs found

    A comparison of nicotine dose estimates in smokers between filter analysis, salivary cotinine, and urinary excretion of nicotine metabolites

    Get PDF
    RATIONALE: Nicotine uptake during smoking was estimated by either analyzing the metabolites of nicotine in various body fluids or by analyzing filters from smoked cigarettes. However, no comparison of the filter analysis method with body fluid analysis methods has been published. OBJECTIVES: Correlate nicotine uptake estimates between filter analysis, salivary cotinine, and urinary excretion of selected nicotine metabolites to determine the suitability of these methods in estimating nicotine absorption in smokers of filtered cigarettes. MATERIALS AND METHODS: A 5-day clinical study was conducted with 74 smokers who smoked 1–19 mg Federal Trade Commission tar cigarettes, using their own brands ad libitum. Filters were analyzed to estimate the daily mouth exposure of nicotine. Twenty-four-hour urine samples were collected and analyzed for nicotine, cotinine, and 3′-hydroxycotinine plus their glucuronide conjugates. Saliva samples were collected daily for cotinine analysis. RESULTS: Each method correlated significantly (p < 0.01) with the other two. The best correlation was between the mouth exposure of nicotine, as estimated by filter analysis, and urinary nicotine plus metabolites. Multiple regression analysis implies that saliva cotinine and urinary output are dependent on nicotine mouth exposure for multiple days. Creatinine normalization of the urinary metabolites degrades the correlation with mouth exposure. CONCLUSIONS: The filter analysis method was shown to correlate with more traditional methods of estimating nicotine uptake. However, because filter analysis is less complicated and intrusive, subjects can collect samples easily and unsupervised. This should enable improvements in study compliance and future study designs

    Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle

    Get PDF
    Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.Foundation of Support to Research of Sao Paulo State (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [07/59127-9
    corecore