15 research outputs found

    Neurodevelopmental Outcome and Treatment Efficacy of Benzoate and Dextromethorphan in Siblings with Attenuated Nonketotic Hyperglycinemia

    Get PDF
    ObjectiveTo evaluate the impact of sodium benzoate and dextromethorphan treatment on patients with the attenuated form of nonketotic hyperglycinemia.Study designFamilies were recruited with 2 siblings both affected with attenuated nonketotic hyperglycinemia. Genetic mutations were expressed to identify residual activity. The outcome on developmental progress and seizures was compared between the first child diagnosed and treated late with the second child diagnosed at birth and treated aggressively from the newborn period using dextromethorphan and benzoate at dosing sufficient to normalize plasma glycine levels. Both siblings were evaluated with similar standardized neurodevelopmental measures.ResultsIn each sibling set, the second sibling treated from the neonatal period achieved earlier and more developmental milestones, and had a higher developmental quotient. In 3 of the 4 sibling pairs, the younger sibling had no seizures whereas the first child had a seizure disorder. The adaptive behavior subdomains of socialization and daily living skills improved more than motor skills and communication.ConclusionsEarly treatment with dextromethorphan and sodium benzoate sufficient to normalize plasma glycine levels is effective at improving outcome if used in children with attenuated disease with mutations providing residual activity and when started from the neonatal period

    The genetic basis of classic nonketotic hyperglycinemia due to mutations in GLDC and AMT

    No full text
    International audiencePurpose: The study's purpose was to delineate the genetic mutations that cause classic nonketotic hyperglycinemia (NKH). Methods: Genetic results, parental phase, ethnic origin, and gender data were collected from subjects suspected to have classic NKH. Mutations were compared with those in the existing literature and to the population frequency from the Exome Aggregation Consortium (ExAC) database. Results: In 578 families, genetic analyses identified 410 unique mutations, including 246 novel mutations. 80% of subjects had mutations in GLDC. Missense mutations were noted in 52% of all GLDC alleles, most private. Missense mutations were 1.5 times as likely to be pathogenic in the carboxy terminal of GLDC than in the amino terminal part. Intragenic copy-number variations (CNVs) in GLDC were noted in 140 subjects, with biallelic CNVs present in 39 subjects. The position and frequency of the breakpoint for CNVs correlated with intron size and presence of Alu elements. Missense mutations, most often recurring, were the most common type of disease-causing mutation in AMT. Sequencing and CNV analysis identified biallelic pathogenic mutations in 98% of subjects. Based on genotype, 15% of subjects had an attenuated phenotype. The frequency of NKH is estimated at 1:76,000. Conclusion: The 484 unique mutations now known in classic NKH provide a valuable overview for the development of genotype-based therapies

    Mutation analysis in 54 propionic acidemia patients

    Full text link
    Deficiency of propionyl CoA carboxylase (PCC), a dodecamer of alpha and beta subunits, causes inherited propionic acidemia. We have studied, at the molecular level, PCC in 54 patients from 48 families comprised of 96 independent alleles. These patients of various ethnic backgrounds came from research centers and hospitals in Germany, Austria and Switzerland. The thorough clinical characterization of these patients was described in the accompanying paper (Grünert et al. 2012). In all 54 patients, many of whom originated from consanguineous families, the entire PCCB gene was examined by genomic DNA sequencing and in 39 individuals the PCCA gene was also studied. In three patients we found mutations in both PCC genes. In addition, in many patients RT-PCR analysis of lymphoblast RNA, lymphoblast enzyme assays, and expression of new mutations in E.coli were carried out. Eight new and eight previously detected mutations were identified in the PCCA gene while 15 new and 13 previously detected mutations were found in the PCCB gene. One missense mutation, p.V288I in the PCCB gene, when expressed in E.coli, yielded 134% of control activity and was consequently classified as a polymorphism in the coding region. Numerous new intronic polymorphisms in both PCC genes were identified. This study adds a considerable amount of new molecular data to the studies of this disease

    Variant non ketotic hyperglycinemia is caused by mutations in <i>LIAS</i>, <i>BOLA3</i> and the novel gene <i>GLRX5</i>

    No full text
    Patients with nonketotic hyperglycinemia and deficient glycine cleavage enzyme activity, but without mutations in AMT, GLDC or GCSH, the genes encoding its constituent proteins, constitute a clinical group which we call ‘variant nonketotic hyperglycinemia’. We hypothesize that in some patients the aetiology involves genetic mutations that result in a deficiency of the cofactor lipoate, and sequenced genes involved in lipoate synthesis and iron-sulphur cluster biogenesis. Of 11 individuals identified with variant nonketotic hyperglycinemia, we were able to determine the genetic aetiology in eight patients and delineate the clinical and biochemical phenotypes. Mutations were identified in the genes for lipoate synthase (LIAS), BolA type 3 (BOLA3), and a novel gene glutaredoxin 5 (GLRX5). Patients with GLRX5-associated variant nonketotic hyperglycinemia had normal development with childhood-onset spastic paraplegia, spinal lesion, and optic atrophy. Clinical features of BOLA3-associated variant nonketotic hyperglycinemia include severe neurodegeneration after a period of normal development. Additional features include leukodystrophy, cardiomyopathy and optic atrophy. Patients with lipoate synthase-deficient variant nonketotic hyperglycinemia varied in severity from mild static encephalopathy to Leigh disease and cortical involvement. All patients had high serum and borderline elevated cerebrospinal fluid glycine and cerebrospinal fluid:plasma glycine ratio, and deficient glycine cleavage enzyme activity. They had low pyruvate dehydrogenase enzyme activity but most did not have lactic acidosis. Patients were deficient in lipoylation of mitochondrial proteins. There were minimal and inconsistent changes in cellular iron handling, and respiratory chain activity was unaffected. Identified mutations were phylogenetically conserved, and transfection with native genes corrected the biochemical deficiency proving pathogenicity. Treatments of cells with lipoate and with mitochondrially-targeted lipoate were unsuccessful at correcting the deficiency. The recognition of variant nonketotic hyperglycinemia is important for physicians evaluating patients with abnormalities in glycine as this will affect the genetic causation and genetic counselling, and provide prognostic information on the expected phenotypic course
    corecore