337 research outputs found

    Surface exclusion and molecular mobility may explain Vroman effects in protein adsorption

    Get PDF
    Data on protein adsorption usually show that for increasing surface coverage the adsorption velocity decreases much faster than linearly. This contrasts to the classical Langmuir model with an adsorption velocity proportional to the number of unoccupied binding sites. It has been shown that this non-linearity may explain phenomena like transient adsorption of different proteins from a protein mixture or dilution-dependent changes in binding properties, collectively called Vroman effects. However, the molecular mechanisms explaining this non-linear behavior remain to be established. A Monte Carlo simulation model is presented that incorporates steric hindrance, lateral mobility and mutual interactions of adsorbed molecules. Experimental data on the adsorption kinetics of prothrombin and annexin V, a recently discovered anticoagulant protein, at phospholipid bilayers are analyzed with this model. A major conclusion is that the steep decline in adsorption rates for increasing surface coverage can be explained, without assuming repulsive forces between adsorbed molecules, as a surface exclusion effect combined with lateral mobility of adsorbed molecules. The fact that annexin V shows this effect to a much lesser degree than prothrombin is tentatively explained by clustering of adsorbed annexin V molecules. A qualitative effect of lateral mobility on the adsorption characteristics, predicted by the model, is confirmed in experiments in which the fluidity of the bilayers was manipulated

    Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    Full text link
    The properties of the population of merging binary black holes encode some of the uncertain physics of the evolution of massive stars in binaries. The binary black hole merger rate and chirp mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common envelope efficiency, kick velocity dispersion, and mass loss rates during the luminous blue variable and Wolf--Rayet stellar evolutionary phases. We find that 1000 observations would constrain these model parameters to a fractional accuracy of a few percent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years.Comment: 12 pages, 9 figures; version accepted by Monthly Notices of the Royal Astronomical Societ

    Monitoring of unbound protein in vesicle suspensions with off-null ellipsometry

    Get PDF
    In studies on the binding of proteins to small unilamellar phospholipid vesicles (SUV), the concentration of unbound protein usually remains unknown, because the vesicles cannot be separated from the bulk solution. In the present study, this limitation was overcome by addition of a supported planar phospholipid bilayer to the cuvette containing a vesicle suspension. Ellipsometric measurement of the protein adsorption velocities on this bilayer allowed determination of the concentrations of unbound protein. At high protein concentrations the adsorption is rapidly completed and the usual null-ellipsometry is too slow to obtain well-defined initial adsorption rates. Therefore, an off-null technique was developed, allowing measurement of the adsorbed protein mass at time intervals of 20 ms. Binding of prothrombin and coagulation factor Xa was measured in SUV suspensions prepared from a 20Va dioleoylphosphatidylserine (DOPS) and 80Vo dioleoylphosphatidylcholine (DOPC) phospho-lipid mixture. For prothrombin, a dissociation constant Kd:140+27 nM (mean*S.E.) and maximal surface concentration fL".: (8.9 + 0.8) ' 10- 3 mole of protein per mole of lipid, were obtained. For factor Xa, these values were K d: 49.6 + 6.3 nM and 1-u *:Q3.0 t 1.4) ' 10-3 mole of protein per mole of lipid. These binding parameters are similar to those obtained earlier for planar bilayers. Apparently, the binding of factor Xa and prothrombin is not dependent on surface curvature. r2
    corecore