209 research outputs found

    Impact of the microbial derived short chain fatty acid propionate on host susceptibility to bacterial and fungal infections in vivo.

    Get PDF
    Short chain fatty acids (SCFAs) produced by intestinal microbes mediate anti-inflammatory effects, but whether they impact on antimicrobial host defenses remains largely unknown. This is of particular concern in light of the attractiveness of developing SCFA-mediated therapies and considering that SCFAs work as inhibitors of histone deacetylases which are known to interfere with host defenses. Here we show that propionate, one of the main SCFAs, dampens the response of innate immune cells to microbial stimulation, inhibiting cytokine and NO production by mouse or human monocytes/macrophages, splenocytes, whole blood and, less efficiently, dendritic cells. In proof of concept studies, propionate neither improved nor worsened morbidity and mortality parameters in models of endotoxemia and infections induced by gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae), gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae) and Candida albicans. Moreover, propionate did not impair the efficacy of passive immunization and natural immunization. Therefore, propionate has no significant impact on host susceptibility to infections and the establishment of protective anti-bacterial responses. These data support the safety of propionate-based therapies, either via direct supplementation or via the diet/microbiota, to treat non-infectious inflammation-related disorders, without increasing the risk of infection

    Trained Immunity Confers Prolonged Protection From Listeriosis.

    Get PDF
    Trained immunity refers to the ability of the innate immune system exposed to a first challenge to provide an enhanced response to a secondary homologous or heterologous challenge. We reported that training induced with β-glucan one week before infection confers protection against a broad-spectrum of lethal bacterial infections. Whether this protection persists over time is unknown. To tackle this question, we analyzed the immune status and the response to Listeria monocytogenes (L. monocytogenes) of mice trained 9 weeks before analysis. The induction of trained immunity increased bone marrow myelopoiesis and blood counts of Ly6C <sup>high</sup> inflammatory monocytes and polymorphonuclear neutrophils (PMNs). Ex vivo, whole blood, PMNs and monocytes from trained mice produced increased levels of cytokines in response to microbial products and limited the growth of L. monocytogenes. In vivo, following challenge with L. monocytogenes, peripheral blood leukocytes were massively depleted in control mice but largely preserved in trained mice. PMNs were reduced also in the spleen from control mice, and increased in the spleen of trained mice. In transwell experiments, PMNs from trained mice showed increased spontaneous migration and CXCL2/MIP2α-induced chemotaxis, suggesting that training promotes the migration of PMNs in peripheral organs targeted by L. monocytogenes. Trained PMNs and monocytes had higher glycolytic activity and mitochondrial respiration than control cells when exposed to L. monocytogenes. Bacterial burden and dissemination in blood, spleen and liver as well as systemic cytokines and inflammation (multiplex bead assay and bioluminescence imaging) were reduced in trained mice. In full agreement with these results, mice trained 9 weeks before infection were powerfully protected from lethal listeriosis. Altogether, these data suggest that training increases the generation and the antimicrobial activity of PMNs and monocytes, which may confer prolonged protection from lethal bacterial infection

    Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cathepsins represent a group of proteases involved in determining the metastatic potential of cancer cells. Among these are cysteinyl- (e.g. cathepsin B and cathepsin L) and aspartyl-proteases (e.g. cathepsin D), normally present inside the lysosomes as inactive proenzymes. Once released in the extracellular space, cathepsins contribute to metastatic potential by facilitating cell migration and invasiveness.</p> <p>Results</p> <p>In the present work we first evaluated, by <it>in vitro </it>procedures, the role of cathepsins B, L and D, in the remodeling, spreading and invasiveness of eight different cell lines: four primary and four metastatic melanoma cell lines. Among these, we considered two cell lines derived from a primary cutaneous melanoma and from a supraclavicular lymph node metastasis of the same patient. To this purpose, the effects of specific chemical inhibitors of these proteases, i.e. CA-074 and CA-074Me for cathepsin B, Cathepsin inhibitor II for cathepsin L, and Pepstatin A for cathepsin D, were evaluated. In addition, we also analyzed the effects of the biological inhibitors of these cathepsins, i.e. specific antibodies, on cell invasiveness. We found that i) cathepsin B, but not cathepsins L and D, was highly expressed at the surface of metastatic but not of primary melanoma cell lines and that ii) CA-074, or specific antibodies to cathepsin B, hindered metastatic cell spreading and dissemination, whereas neither chemical nor biological inhibitors of cathepsins D and L had significant effects. Accordingly, <it>in vivo </it>studies, i.e. in murine xenografts, demonstrated that CA-074 significantly reduced human melanoma growth and the number of artificial lung metastases.</p> <p>Conclusions</p> <p>These results suggest a reappraisal of the use of cathepsin B inhibitors (either chemical or biological) as innovative strategy in the management of metastatic melanoma disease.</p

    Comparison of field measurement methods of nitrous oxide soil emissions: from the chamber to the vial

    Get PDF
    Nitrous oxide (N2O) is a greenhouse gas that contributes substantially to global climate change. The N2O soil emissions have a large uncertainty because of its low atmospheric concentration levels and enormous spatial and temporal variability, which hinders its correct field measurement. For this reason, there are many papers focused on improving the N2O measurements in the field, which focus on different parts of the measurement process. However, no studies have focused on determining the appropriate method, in terms of simplicity and precision, for the sample extraction from inside of the chambers and its transfer to the storage vials, although this step is key in the sampling process. This study aimed to assess and compare the accuracies of three simple and economical methods in transfer soil emitted N2O from inside of the chambers to the vials. For this, a highly accepted method (vacuum by manual pump) and two simpler alternative methods (gas exchange by displacement and vacuum by syringe) were compared. Thirty static chambers were assessed with the quantified N2O emission values varied from 0 to 450 µg m-2 h-1 of N-N2O. Out of the three assessed methods, the vacuum method through the use of a manual vacuum pump was the best to quantifying N2O soil emissions (capturing 57 % of the highest emission values), followed by the gas exchange method by displacement (30 %), and finally by the vacuum method by syringe extraction (13%).Fil: Cosentino, Vanina Rosa Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Fertilidad y Fertilizantes; ArgentinaFil: Romaniuk, Romina Ingrid. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Lupi, Ana Maria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de suelos; ArgentinaFil: Gomez, Federico. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Fertilidad y Fertilizantes; Argentina.Fil Rimski Korsakov, Helena Universidad de Buenos Aires, Facultad de Agronomía, Ciudad Autónoma de Buenos Aires, Buenos Aires, ArgentinaFil: Alvarez, Carina Rosa. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Ciarlo, Esteban Universidad de Buenos Aires, Facultad de Agronomía, Ciudad Autónoma de Buenos Aires, Argentin

    Activity and safety of RAD001 (everolimus) in patients affected by biliary tract cancer progressing after prior chemotherapy: a phase II ITMO study.

    Get PDF
    BACKGROUND: Biliary tract cancer (BTC) is a highly lethal disease for which the best available therapy remains undetermined. The mammalian target of rapamycin (mTOR) pathway is up-regulated in several cancers, including BTC, and preclinical evidence indicates that mTOR inhibition may be effective in the treatment of BTC. We sought to evaluate the activity and tolerability of the mTOR inhibitor RAD001-everolimus-in patients with BTC progressing after prior chemotherapy. PATIENTS AND METHODS: This was an open-label, single-arm, phase II study (EUDRACT 2008-007152-94) conducted in eight sites in Italy. Patients with locally advanced, metastatic or recurrent BTC progressing despite previous chemotherapy received a daily oral dose of everolimus 10 mg administered continuously in 28-day cycles. The two primary end points were disease control rate (DCR) and objective response rate (ORR). Secondary end points were progression-free survival (PFS), overall survival (OS) and time-to-progression (TTP). RESULTS: Thirty-nine patients were enrolled. The DCR was 44.7%, and the ORR was 5.1%. One patient showed a partial response at 2 months and one patient showed a complete response sustained up to 8 months. The median (95% confidence interval) PFS was 3.2 (1.8-4.0) months, and the median OS was 7.7 (5.5-13.2) months. The median TTP was 2.0 (1.7-3.7) months. Most common toxicities were asthenia (43.6%), thrombocytopenia (35.9%), pyrexia (30.8%) and erythema, mainly of mild-to-moderate severity. Two patients required dose reduction due to adverse events. CONCLUSION: Everolimus demonstrated a favourable toxicity profile and encouraging anti-tumour activity. Further trials are needed to establish the role of everolimus in the treatment of BTC. EUDRACT 2008-007152-94

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Khorana score and thromboembolic risk in stage II–III colorectal cancer patients: a post hoc analysis from the adjuvant TOSCA trial

    Get PDF
    Background: The risk of venous thromboembolic events (VTE) during adjuvant chemotherapy for colorectal cancer (CRC) is unknown. We aim to evaluate if the Khorana score (KS) can predict this risk, and if it represents a prognostic factor for overall survival (OS) through a post hoc analysis of the phase III TOSCA trial of different durations (3- versus 6-months) of adjuvant chemotherapy. Methods: A logistic regression model was used to test the associations between the risk of VTE and the KS. The results are expressed as odds ratios (OR) with 95% confidence intervals (95% CI). To assess the effect of the KS on OS, multivariable analyses using Cox regression models were performed. The results are expressed as hazard ratios (HR) with 95% CI. Results: Among 1380 CRC patients with available data, the VTE risk (n = 72 events: 5.2%) was similar in the two duration arms (5.5% versus 4.9%), with 0.2% of patients belonging to the high-risk KS group. Rates of VTE were similar in the low- and intermediate-risk groups (4.8% versus 6.4%). KS did not represent an independent predictive factor for VTE occurrence. Chemotherapy duration was not associated with VTE risk. In addition, KS was not prognostic for OS in multivariate analysis (HR: 0.92, 95% CI, 0.63–1.36; p = 0.6835). Conclusions: The use of the KS did not predict VTEs in a low–moderate thromboembolic risk population as CRC. These data did not support the use of KS to predict VTE during adjuvant chemotherapy, and suggest that other risk assessment models should be researched

    De novo design of protein logic gates

    Get PDF
    The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo–designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions
    corecore