83 research outputs found
High-spin structure and Band Termination in Cd
Excited states of the neutron deficient Cd nucleus have been
investigated via the Ge(Cl, p3n) reaction at beam energy of 135
MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the
excited states were detected using the Gammasphere spectrometer with high-fold
-ray coincidences. A quadrupole -ray coincidence analysis
() has been used to extend the known level scheme. The positive
parity levels have been established up to and
MeV. In addition to the observation of highly-fragmented level scheme belonging
to the positive-parity sequences at E 5 MeV, the termination of a
negative-parity sequence connected by transitions has been established at
and MeV. The experimental results
corresponding to both the positive- and negative-parity sequences have been
theoretically interpreted in the framework of the core particle coupling model.
Evidence is presented for a shape change from collective prolate to
non-collective oblate above the (8011 keV) level and for a
smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.
High-spin structure and Band Termination in Cd
Excited states of the neutron deficient Cd nucleus have been
investigated via the Ge(Cl, p3n) reaction at beam energy of 135
MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the
excited states were detected using the Gammasphere spectrometer with high-fold
-ray coincidences. A quadrupole -ray coincidence analysis
() has been used to extend the known level scheme. The positive
parity levels have been established up to and
MeV. In addition to the observation of highly-fragmented level scheme belonging
to the positive-parity sequences at E 5 MeV, the termination of a
negative-parity sequence connected by transitions has been established at
and MeV. The experimental results
corresponding to both the positive- and negative-parity sequences have been
theoretically interpreted in the framework of the core particle coupling model.
Evidence is presented for a shape change from collective prolate to
non-collective oblate above the (8011 keV) level and for a
smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.
Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article�s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article�s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with known sequence variants, we are able to determine that the intraocular pressure-lowering effect of pregabalin is dependent on the Cacna2d1 haplotype. Using human genome-wide association study (GWAS) data, evidence for association of a CACNA2D1 single-nucleotide polymorphism and primary open angle glaucoma is found. Importantly, these results demonstrate that our systems genetics approach represents an efficient method to identify genetic variation that can guide the selection of therapeutic targets
Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility
Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with kno
Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility
Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with known sequence variants, we are able to determine that the intraocular pressure-lowering effect of pregabalin is dependent on the Cacna2d1 haplotype. Using human genome-wide association study (GWAS) data, evidence for association of a CACNA2D1 single-nucleotide polymorphism and primary open angle glaucoma is found. Importantly, these results demonstrate that our systems genetics approach represents an efficient method to identify genetic variation that can guide the selection of therapeutic targets
Multi-objective optimization in the presence of practical constraints using non-dominated sorting hybrid cuckoo search algorithm
A novel optimization algorithm is proposed to solve single and multi-objective optimization problems with generation fuel cost, emission, and total power losses as objectives. The proposed method is a hybridization of the conventional cuckoo search algorithm and arithmetic crossover operations. Thus, the non-linear, non-convex objective function can be solved under practical constraints. The effectiveness of the proposed algorithm is analyzed for various cases to illustrate the effect of practical constraints on the objectives' optimization. Two and three objective multi-objective optimization problems are formulated and solved using the proposed non-dominated sorting-based hybrid cuckoo search algorithm. The effectiveness of the proposed method in confining the Pareto front solutions in the solution region is analyzed. The results for single and multi-objective optimization problems are physically interpreted on standard test functions as well as the IEEE-30 bus test system with supporting numerical and graphical results and also validated against existing methods
Available transfer capability evaluation and enhancement using various FACTS controllers: Special focus on system security
Nowadays, because of the deregulation of the power industry the continuous increase of the load increases the necessity of calculation of available transfer capability (ATC) of a system to analyze the system security. With this calculation, the scheduling of generator can be decided to decrease the system severity. Further, constructing new transmission lines, new substations are very cost effective to meet the increasing load and to increase the transfer capability. Hence, an alternative way to increase the transfer capability is use of flexible ac transmission system (FACTS) controllers. In this paper, SSSC, STACOM and UPFC are considered to show the effect of these controllers in enhancing system ATC. For this, a novel current based modeling and optimal location strategy of these controllers are presented. The proposed methodology is tested on standard IEEE-30 bus and IEEE-57 bus test systems with supporting numerical and graphical results
Physical Activity Recommendation System Based on Deep Learning to Prevent Respiratory Diseases
The immune system can be compromised when humans inhale excessive cooling. Physical activity helps a person’s immune system, and influenza seasonally affects immunity and respiratory tract illness when there is no physical activity during the day. Whenever people chill excessively, they become more susceptible to pathogens because they require more energy to maintain a healthy body temperature. There is no doubt that exercise improves the immune system and an individual’s fitness. According to an individual’s health history, lifestyle, and preferences, the physical activity framework also includes exercises to improve the immune system. This study developed a framework for predicting physical activity based on information about health status, preferences, calorie intake, race, and gender. Using information about comorbidities, regions, and exercise/eating habits, the proposed recommendation system recommends exercises based on the user’s preferences
- …