67 research outputs found

    Developing a smart and clean technology for bioremediation of antibiotic contamination in arable lands

    Get PDF
    This study presents a smart technological framework to efficiently remove azithromycin from natural soil resources using bioremediation techniques. The framework consists of several modules, each with different models such as Penicillium Simplicissimum (PS) bioactivity, soft computing models, statistical optimisation, Machine Learning (ML) algorithms, and Decision Tree (DT) control system based on Removal Percentage (RP). The first module involves designing experiments using a literature review and the Taguchi Orthogonal design method for cultural conditions. The RP is predicted as a function of cultural parameters using Response Surface Methodology (RSM) and three ML algorithms: Instance-Based K (IBK), KStar, and Locally Weighted Learning (LWL). The sensitivity analysis shows that pH is the most important factor among all parameters, including pH, Aeration Intensity (AI), Temperature, Microbial/Food (M/F) ratio, and Retention Time (RT), with a p-value of <0.0001. AI is the next most significant parameter, also with a p-value of <0.0001. The optimal biological conditions for removing azithromycin from soil resources are a temperature of 32 °C, pH of 5.5, M/F ratio of 1.59 mg/g, and AI of 8.59 m3/h. During the 100-day bioremediation process, RP was found to be an insignificant factor for more than 25 days, which simplifies the conditions. Among the ML algorithms, the IBK model provided the most accurate prediction of RT, with a correlation coefficient of over 95%

    Enhancing community resilience in arid regions: A smart framework for flash flood risk assessment

    Get PDF
    This paper presents a novel framework for smart integrated risk management in arid regions. The framework combines flash flood modelling, statistical methods, artificial intelligence (AI), geographic evaluations, risk analysis, and decision-making modules to enhance community resilience. Flash flood is simulated by using Watershed Modelling System (WMS). Statistical methods are also used to trim outlier data from physical systems and climatic data. Furthermore, three AI methods, including Support Vector Machine (SVM), Artificial Neural Network (ANN), and Nearest Neighbours Classification (NNC), are used to predict and classify flash flood occurrences. Geographic Information System (GIS) is also utilised to assess potential risks in vulnerable regions, together with Failure Mode and Effects Analysis (FMEA) and Hazard and Operability Study (HAZOP) methods. The decision-making module employs the Classic Delphi technique to classify the appropriate solutions for flood risk control. The methodology is demonstrated by its application to the real case study of the Khosf region in Iran, which suffers from both drought and severe floods simultaneously, exacerbated by recent climate changes. The results show high Coefficient of determination (R2) scores for the three AI methods, with SVM at 0.88, ANN at 0.79, and NNC at 0.89. FMEA results indicate that over 50% of scenarios are at high flood risk, while HAZOP indicates 30% of scenarios with the same risk rate. Additionally, peak flows of over 24 m3/s are considered flood occurrences that can cause financial damage in all scenarios and risk techniques of the case study. Finally, our research findings indicate a practical decision support system that is compatible with sustainable development concepts and can enhance community resilience in arid regions

    Enhancing flood risk mitigation by advanced data-driven approach

    Get PDF
    Flood events in the Sefidrud River basin have historically caused significant damage to infrastructure, agriculture, and human settlements, highlighting the urgent need for improved flood prediction capabilities. Traditional hydrological models have shown limitations in capturing the complex, non-linear relationships inherent in flood dynamics. This study addresses these challenges by leveraging advanced machine learning techniques to develop more accurate and reliable flood estimation models for the region. The study applied Random Forest (RF), Bagging, SMOreg, Multilayer Perceptron (MLP), and Adaptive Neuro-Fuzzy Inference System (ANFIS) models using historical hydrological data spanning 50 years. The methods involved splitting the data into training (50–70 %) and validation sets, processed using WEKA 3.9 software. The evaluation revealed that the nonlinear ensemble RF model achieved the highest accuracy with a correlation of 0.868 and an root mean squared error (RMSE) of 0.104. Both RF and MLP significantly outperformed the linear SMOreg approach, demonstrating the suitability of modern machine learning techniques. Additionally, the ANFIS model achieved an exceptional R-squared accuracy of 0.99. The findings underscore the potential of data-driven models for accurate flood estimating, providing a valuable benchmark for algorithm selection in flood risk management

    An intelligent decision support system for groundwater supply management and electromechanical infrastructure controls

    Get PDF
    This study presents an intelligent Decision Support System (DSS) aimed at bridging the theoretical-practical gap in groundwater management. The ongoing demand for sophisticated systems capable of interpreting extensive data to inform sustainable groundwater decision- making underscores the critical nature of this research. To meet this challenge, telemetry data from six randomly selected wells were used to establish a comprehensive database of groundwater pumping parameters, including flow rate, pressure, and current intensity. Statistical analysis of these parameters led to the determination of threshold values for critical factors such as water pressure and electrical current. Additionally, a soft sensor was developed using a Random Forest (RF) machine learning algorithm, enabling real-time forecasting of key variables. This was achieved by continuously comparing live telemetry data to pump design specifications and results from regular field testing. The proposed machine learning model ensures robust empirical monitoring of well and pump health. Furthermore, expert operational knowledge from water management professionals, gathered through a Classical Delphi (CD) technique, was seamlessly integrated. This collective expertise culminated in a data-driven framework for sustainable groundwater facilities monitoring. In conclusion, this innovative DSS not only addresses the theory-application gap but also leverages the power of data analytics and expert knowledge to provide high-precision online insights, thereby optimizing groundwater management practices

    Data for: Crystalline network study of new N-phthaloyl-β-Alanine with benzimidazole, cocrystal: Computational consideration &amp; free radical scavenging activity

    No full text
    The Crystallographic Information File brings all of structural parameters of a new synthesized compoun

    On some lifetime distributions with decreasing failure rate

    Full text link

    Prediction Intervals for k-records in Terms of Current Records

    No full text
    In this paper, we discuss the prediction of k-records from the future sequence based on observed current records of either kind upper or lower, record coverage and k-records from the same distribution. It is shown that the coverage probability of all proposed prediction intervals are distribution-free. Exact and explicit expressions for the prediction coefficient of these intervals are obtained. The existence and optimality of these intervals are discussed. At the end, a numerical example is given for illustrating and comparing the proposed procedure

    On some lifetime distributions with decreasing failure rate

    No full text
    A new two-parameter distribution family with decreasing failure rate arising by mixing power-series distribution and exponential distribution is introduced. This family includes some well-used mixing distributions. Various properties of this family are discussed and the estimation of parameters are obtained by method of maximum likelihood. An EM algorithm is proposed for computing the estimates and expression for their asymptotic variances and covariances are derived. Simulation studies are performed and experimental results are illustrated based on real data sets.

    Fuzzy record values

    Full text link
    corecore