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Background
Under the name of the “new lifetime distribution”, about 400 studies have been done in 
the recent 5  years. In particular, the compound distributions obtained by exponential 
distribution are applicable in the fields such as electronics, geology, medicine, biology 
and actuarial. Some of these works can be summarized as follows: Adamidis and Loukas 
(1998) and Adamidis et al. (2005) introduced a two-parameter lifetime distribution with 
decreasing failure rate by compounding exponential and geometric distribution. In the 
same way, exponential-Poisson (EP) and exponential-logarithmic (EL) distributions 
were given by Kus (2007) and Tahmasbi and Rezaei (2008), respectively. Chahkandi and 
Ganjali (2009) introduced exponential-power series distributions (EPS). Barreto-Souza 
and Bakouch (2013) introduced a new three-parameter distribution by compounding 
exponential and Poisson–Lindley distributions, named the exponential Poisson–Lindley 
(EPL) distribution. Exponential-Negative Binomial distribution is introduced by Hajebi 
et  al. (2013). Furthermore, Gui et  al. (2014) have considered the Lindley distribution 
which can be described as a mixture of the exponential and gamma distributions. This 
idea has helped them to propose a new distribution named as Lindley–Poisson by com-
pounding the Lindley and Poisson distributions.

Because most of those distributions have decreasing failure rate. They have impor-
tant place in reliability theory. Lots of those lifetime data can be modelled by compound 
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distributions. Although these compound distributions are quite complex, new distribu-
tions can fit better than the known distributions for modelling lifetime data.

Probability mass function of the discrete Lindley distribution obtained by discretizing 
the continuous survival function of the Lindley distribution (Gómez-Déniz and Calde-
rín-Ojeda 2011; Eq. 3, Bakouch et al. 2014; Eq. 3). This discrete distribution provided by 
authors above, is quite a complex structure in terms of parameter. In order to overcome 
problems in estimation process of the parameter of Lindley distribution, we propose a 
modified discrete Lindley distribution. Thus, estimation process of the parameters using 
especially the EM algorithm was facilitated. Afterwards, we propose a new lifetime dis-
tribution with decreasing hazard rate by compounding exponential and modified-zero-
truncated discrete Lindley distributions.

This paper is organized as follows: In “Construction of the model” section, we propose 
the two-parameter exponential-modified discrete Lindley (EMDL) distribution, by mix-
ing exponential and zero truncated modified discrete Lindley distribution, which exhibits 
the decreasing failure rate (DFR) property. In “Properties of EMDL distribution” section, 
we obtain moment generating function, quantile, failure rate, survival and mean residual 
lifetime functions of the EMDL. In “Inference” section, the estimation of parameters is 
studied by some methods such as moments, maximum likelihood and EM algorithm. Fur-
thermore, information matrix and observed information matrix are also discussed in this 
section. The end of this section includes a detailed simulation study to see the performance 
of Moments (with lower and upper bound approximations), ML and EM estimates. Illus-
trative examples based on three real data sets are provided in “Applications” section.

Construction of the model
In this section, we first give the definition of the discrete Lindley distribution intro-
duced by Gómez-Déniz and Calderín-Ojeda (2011) and Bakouch et al. (2014). We have 
achieved a more simplified discrete distribution than discrete Lindley distribution by 
taking 1− θ instead of e−θ in subsequent definition. Thus, we introduce a new lifetime 
distribution by compounding Exponential and Modified Discrete Lindley distributions, 
named the Exponential-Modified Discrete Lindley (EMDL) distribution.

Discrete Lindley distribution

A discrete random variable M is said to have Lindley distribution with the parameter 
θ > 0, if its probability mass function (p.m.f ) is given by

The cumulative distribution function of M will be given by

Modified discrete Lindley distribution

If θ is limited to the range (0, 1), then we replace exp(−θ) by 1− θ using the first degree 
Taylor expansion of exp(−θ) in (1). The new discrete distribution is specified by the fol-
lowing probability mass function:

(1)P(M = m) = e−mθ

1+ θ

(

θ
(

1− 2e−θ
)

+
(

1− e−θ
)

(1+ θm)
)

, m = 0, 1, 2, . . .

P(M ≤ m) = 1− 1+ 2θ + θm

1+ θ
e−(m+1)θ , m = 0, 1, 2, . . .
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for 0 < θ < 1 and m = 0, 1, 2, . . .. We call this distribution Modified Discrete Lindley 
(MDL).

Theorem 1  MDL distribution can be represented as a mixture of geometric and nega-
tive binomial distributions with mixing proportion is θ

1+θ
, and a common success rate θ.

Proof  If p.m.f in (2) is rewritten as the following form

then f1 indicates p.m.f of a geometric random variable with success probability θ and f2 
indicates p.m.f of a negative binomial random variable which denotes the number of tri-
als until the second success, with common success probability θ. w1 = θ

1+θ
 and w2 = 1

1+θ
 

denote component probabilities; in other words these are called the mixture weights 
(Fig. 1).�  �

Note that MDL distribution has an increasing hazard rate while a geometric distribu-
tion has a constant hazard rate. So, MDL distribution is more useful than geometric dis-
tribution for modelling the number of rare events.

When the θ is closed to zero, then MDL can occure different shapes than the p.m.f 
of a Geometric distribution. This situation made the distribution thinner right tail than 
a distribution which is compounded with exponential distribution. Thus, this proposed 
compound distribution can be usefull for modelling lifetime data such as time interval 
between successive earthquakes, time period of bacteria spreading, recovery period of 
the certain disease.

Exponential modified discrete Lindley distribution

Suppose that M is a zero truncated MDL random variable with probablity mass function 
π(m) = P(M = m |M > 0) = θ2

(1+2θ)
(1− θ)m−1(m+ 2) and X1,X2, . . . ,XM are i.i.d. with 

probability density function h(x;β) = βe−βx, x > 0. Let X = min(X1,X2, . . . ,XM), then 
g(x|m;β) = mβe−mβx and g(x,m) = g(x|m)π(m) = βθ2

(1+2θ)
m(m+ 2)(1− θ)m−1e−mβx.

Thus, we can obtain the marginal probability density function of X as

where θ ∈ (0, 1) and β > 0. Henceforth, the distribution of the random variable X hav-
ing the p.d.f in (3) is called shortly EMDL. By changing of variables r = (1− θ)e−βx in 
cumulative integration of (3), the distribution function can be found as follows:

(2)P(M = m) = θ2

1+ θ
(1− θ)m(m+ 2),

P(M = m) = θ

1+ θ

[

θ(1− θ)m
]

+ 1

1+ θ

[

θ2(m+ 1)(1− θ)m
]

= w1f1(m)+w2f2(m),

(3)f (x; θ ,β) = θ2

1+ 2θ

βe−βx
(

3− (1− θ)e−βx
)

(

1− (1− θ)e−βx
)3

, x > 0

F(x; θ ,β) = 1−
[

θ2

1+ 2θ

e−βx
(

3− 2(1− θ)e−βx
)

(

1− (1− θ)e−βx
)2

]

.
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Following figure shows different shapes of p.d.f of EMDL random variable for various 
values of θ and β (Fig. 2).

Properties of EMDL distribution
In this section the important characteristics and features in mathematical statistics and 
realibility which are moment generating function and moments, quantiles, survival, haz-
ard rate and mean residual life functions of the EMDL distribution are introduced. We 
will also give a relationship with Lomax and Exponential-Poisson distributions.

Moment generating function and moments

Moment generating function of X is given by

for t < β. Hence a closed form of k.th raw moment of X is expressed by

for k = 1, 2, . . .. Here for k > 1 raw moments can be calculated numerically for given val-
ues of θ since infinite series above can be represented by polylog functions.

M(t) = E
(

etx
)

= θ2

1+ 2θ

∞
∑

j=1

j
(

j + 2
)

(1− θ)j−1 β

βj − t

E
(

Xk
)

= Ŵ(k + 1)θ2

βk(1+ 2θ)

∞
∑

j=1

(

j + 2
)

jk
(1− θ)j−1,
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Fig. 1  P.m.f of geometric, negative binomial and modified discrete Lindley
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First and second raw moments are evaluated respectively as

Quantile function

Quantile function of X is obtained simply by inverting F(x; θ ,β) = q as follows

where 0 < q < 1 and A(θ) = θ2

(1+2θ)(1−θ)
. In particular, the first quartile of X is

the median of X is

(4)E(X) = θ

β(1+ 2θ)

[

1− 2θ ln θ

1− θ

]

,

(5)E
(

X2
)

= 2θ2

β2(1+ 2θ)(1− θ)

[

− ln θ + 2

∞
∑

k=1

(1− θ)k

k2

]

xq =
log(1− θ)− log

[

(2(1−q)+3A(θ))−
√

9A(θ)2+4(1−q)A(θ)
2(1−q)+4A(θ)

]

β

x0.25 =
log(1− θ)− log

[
(

3
2
+3A(θ)

)

−
√

9A(θ)2+3A(θ)

3
2
+4A(θ)

]

β
,

x0.5 =
log(1− θ)− log

[

(1+3A(θ))−
√

9A(θ)2+2A(θ)
1+4A(θ)

]

β
,

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

x

f
(x
)

 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

f
(x
)

 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

x

f
(x
)

 

 

0 0.5 1 1.5 2
0

1

2

3

4

5

x

f
(x
)

 

 

 (θ=0.3, β=0.1)
 (θ=0.5, β=0.1)
 (θ=0.7, β=0.1)

 (θ=0.3, β=0.4)
 (θ=0.5, β=0.4)
 (θ=0.7, β=0.4)

 (θ=0.3, β=0.7)
 (θ=0.5, β=0.7)
 (θ=0.7, β=0.7)

 (θ=0.3, β=1)
 (θ=0.5, β=1)
 (θ=0.7, β=1)

Fig. 2  P.d.f of EMDL random variable for different parameter values
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and the third quartile of X is

Survival, hazard rate and mean residual life functions

The survival function of X is given by (Fig. 3)

From (3) and (6) it is easy to verify that the hazard rate function of X is

with h(0) = β(2+θ)
θ(1+2θ)

≥ β and limx→∞ h(x) = β where r = (1− θ)e−βx. As it can be seen 
immediately from last two statements on the right side of (7), h(x) is a monotonically 
decreasing function and bounded from below with β (see Fig. 4).

x0.75 =
log(1− θ)− log

[
(

1
2
+3A(θ)

)

−
√

9A(θ)2+A(θ)

1
2
+4A(θ)

]

β
.

(6)S(x) = θ2

1+ 2θ

(

e−βx
(

3− 2(1− θ)e−βx
)

(

1− (1− θ)e−βx
)2

)

.

(7)

h(x) = f (x)

S(x)
= β

(3− r)

(1− r)(3− 2r)
= β

[

1+ 2
r(2− r)

(1− r)(3− 2r)

]

= β

[

2

(1− r)
− 3

(3− 2r)

]
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Fig. 3  Survival function of EMDL random variable for selected parameter values
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The mean residual life function of X is given by

where r = (1− θ)e−βx. Note that mrl(x) ≤ 1
β

 holds for x > 0. We can see this result 
immediately below by letting −ln(1− r) =

∫ 1

1−r
1
z dz. Then applying the mean value 

theorem, we have the upper bound for −ln(1− r) as r
1−r. If this upper bound is written 

above, then

We have the following graphs of mrl(x) for different values of parameter θ and β (Fig. 5).

Relationship of the other distribution 

Let consider the following transformation of X

Then the probability density function of Y can be obtained as

mrl(x) = E(X − x|X > x)

= 1

β

r(1− r)− 2(1− r)2ln(1− r)

3r − 2r2

mrl(x) ≤ 1

β

3(1− r)

3− 2r
≤ 1

β
.

Y = eβX − 1

1− θ
.

fY
�

y
�

= 3θ

1+ 2θ







θ
1−θ

�

y+ θ
1−θ

�2






+ 1− θ

1+ 2θ







2

�

θ
1−θ

�2

�

y+ θ
1−θ

�3






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Fig. 4  Hazard rate function of EMDL random variable for selected parameter values
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It can be easily seen that distribution of Y is a mixture of two Lomax distributions with 
common scale paramater θ

1− θ
, and α = 1 and α = 2 respectively. Thus, 3θ

1+ 2θ
 and 1−θ

1+2θ
 

represent the weight probabilities of mixture components.

Inference
In this section the estimation techniques of the parameters of the EMDL distribution 
are studied using the moments, maximum likelihood and EM algorithm. In particular, 
because first two moments of the distribution have a very complex structure, we have 
developed bounds to get a solution more easily. Fisher information matrix and asymp-
totic confidence ellipsoid for the parameters θ and β are also obtained. A detailed simu-
lation study based on four estimation mehods is located at the end of this section.

Estimation by moments

Let X1, X2, . . . ,Xn be a random sample from EMDL distribution and m1 and m2 rep-
resent the first two sample moments. Then from (4) and (5), we will have the following 
system of equations

where I(θ) =
∑∞

k=1
(1−θ)k

k2
.

(8)m1 =
θ

β(1+ 2θ)

[

1− 2θ ln θ

1− θ

]

,

(9)m2 =
2θ2

β2(1+ 2θ)(1− θ)
[− ln θ + 2 I(θ)].
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Fig. 5  Mrl function of EMDL random variable for different parameter values
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Moment estimates of θ and β can be obtained by solving equations above. However, 
Eqs. (8) and (9) have no explicit analytical solutions for the parameters. Thus, the esti-
mates can be obtained by means of numerical procedures such as Newton-Raphson 
method. Since we can only get the symbolic computation for I(θ), the calculation pro-
cess takes too long during simulations. Therefore, we will find the lower and upper 
bounds for I(θ).

Theorem 2  For θ ∈ [0, 1], I(θ) lies between θ
1−θ

ln (θ)+ 3−θ
2

 and θ(2−θ)
2(1−θ)

ln (θ)+ 7−5θ
4

 i.e.

Proof  (lower bound) Let write inequality k2 ≤ k(k + 1) for all k, then (1−θ)k

k2
≥ (1−θ)k

k(k+1)
 

holds. We have the following lower bound for I(θ) when summation is made over k

According to convergence test (comparison test) of infinite series, since 
∑∞

k=1 (1− θ)k 
is a convergent geometric series, two infinite series in the right hand side of inequality 
above are both convergent. By using Fubini’s theorem for these series respectively we 
have

and

By subtracting first term from the second and adding (1− θ), then we get the lower 
bound for I(θ).

(upper bound) Let write inequality k2 ≥ k2 − 1 for all k = 2, 3, . . ., then we have the 
upper bound for 

∑∞
k=2

(1−θ)k

k2
 as below:

Let’s add and subtract the term 
∑∞

k=2
(1−θ)k

k
 in bounds above, then

θ

1− θ
ln (θ)+ 3− θ

2
≤ I(θ) ≤ θ(2− θ)

2(1− θ)
ln (θ)+ 7− 5θ

4

I(θ) ≥
∞
∑

k=1

(1− θ)k

k(k + 1)
=

∞
∑

k=1

(1− θ)k

k
−

∞
∑

k=1

(1− θ)k

k + 1
.

(10)

∞
∑

k=2

(1− θ)k

k
=

∞
∑

k=2

(

∫ 1

θ

(1− z)k−1dz

)

=
∫ 1

θ

( ∞
∑

k=2

(1− z)k−1

)

dz

= θ − ln (θ)− 1

(11)

∞
∑

k=2

(1− θ)k

k + 1
= 1

(1− θ)

∞
∑

k=2

(

∫ 1

θ

(1− z)kdz

)

= 1

(1− θ)

∫ 1

θ

( ∞
∑

k=2

(1− z)k

)

dz

= −2 ln (θ)+ 4θ − θ2 − 3

2(1− θ)

(12)
∞
∑

k=2

(1− θ)k

k2
≤ 1

2

[ ∞
∑

k=2

(1− θ)k

k − 1
−

∞
∑

k=2

(1− θ)k

k + 1

]

( ∞
∑

k=2

(1− θ)k

k − 1
−

∞
∑

k=2

(1− θ)k

k

)

+
( ∞
∑

k=2

(1− θ)k

k
−

∞
∑

k=2

(1− θ)k

k + 1

)

.
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First term can be rewritten following form

Thus, (12) can be expressed by

The latter is combined with the expressions (10) and (11) together then we have

If this result is placed in position in the brackets in the expression (12), and adding the 
term (1− θ), then the upper bound is obtained.

Graph below shows that these bounds are eligible for I(θ), so, this leads us to solve 
moment estimate by using these bounds (Fig. 6).

Now let’s go back to the moments estimation problem. From the Eq.  (8) we get the 
equality for β and replace it in (9), then we have the following equation to get a solution 
for θ

Solution was obtained by putting lower and upper limits in place of I(θ), and applying 
Newton Raphson’s method.

∞
∑

k=2

(1− θ)k

k − 1
−

∞
∑

k=2

(1− θ)k

k
= (1− θ)2 +

∞
∑

k=3

(1− θ)k

k − 1
− (1− θ)2

2
−

∞
∑

k=3

(1− θ)k

k

= (1− θ)2

2
+ (1− θ)

( ∞
∑

k=2

(1− θ)k

k
−

∞
∑

k=2

(1− θ)k

k + 1

)

(1− θ)2

2
+ (2− θ)

( ∞
∑

k=2

(1− θ)k

k
−

∞
∑

k=2

(1− θ)k

k + 1

)

.

(1− θ)2

2
+ (2− θ)

(

θ

1− θ
ln (θ)+ 1+ θ

2

)

.

(1+ 2θ)(1− θ)
− ln (θ)+ 2I(θ)

(1− θ − 2θ ln (θ))2
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Estimation by maximum likelihood 

Let x = (x1, x2, . . . , xn) be an observation of size n from the EMDL distribution with 
parameters θ and β. The log likelihood ℓ = ℓ(θ ,β; x) for (θ ,β) is

and subsequently differentiating (13) with respect to θ and β yields the likelihood equa-
tions for (θ ,β)

The solution of two equations above does not have a closed form, therefore numerical 
techniques can be used to solve the above system of equations.

We investigate below conditions for the solution of this system of equations for β and θ.

Proposition 1  If n
2
<

∑n
i=1 e

−βxi, then the equation ∂ℓ/∂θ = 0 has at least one root in 
(0, 1), where β is the true value of the parameter.

Proof  Let ω(θ) denote the function on the RHS of the expression ∂ℓ/∂θ, then it is clear 
that lim

θ→0
ω(θ) = +∞ and lim

θ→1
ω(θ) = 4n

3
+ 1

3

∑n
i=1 e

−βxi − 3
∑n

i=1 e
−βxi. Therefore, the 

equation ω(θ) = 0 has at least one root in (0, 1), if n
2
−

∑n
i=1 e

−βxi < 0.�  �

Proposition 2  If θ is the true value of the parameter, the root of the equation ∂ℓ/∂β = 0 
lies in the interval 

[

1

X
θ

(3−2θ)
, 1

X
2+θ

(1+2θ)

]

.

Proof  Let ω(β) denote the function on the RHS of the expression ∂ℓ/∂β, then

Note that 3− (1− θ)e−βxi ≥ 2+ θ and e−βxi ≤ 1. Hence,

Therefore, ω(β) ≤ 0 when β ≥ 1
x

2+θ
1+2θ

. On the other hand,

(13)

ℓ(θ ,β; x) = n ln β + n ln

(

θ2

1+ 2θ

)

− β

n
∑

i=1

xi +
n

∑

i=1

ln
(

3− (1− θ)e−βxi
)

− 3

n
∑

i=1

ln
(

1− (1− θ)e−βxi
)

∂ℓ

∂θ
=2n(1+ θ)

θ(1+ 2θ)
+

n
∑

i=1

e−βxi

3− (1− θ)e−βxi
− 3

n
∑

i=1

e−βxi

1− (1− θ)e−βxi
= 0

∂ℓ

∂β
= n

β
−

n
∑

i=1

xi +
n

∑

i=1

xi(1− θ)e−βxi

3− (1− θ)e−βxi
− 3

n
∑

i=1

xi(1− θ)e−βxi

1− (1− θ)e−βxi
= 0

ω(β) ≤ n

β
−

n
∑

i=1

xi +
n

∑

i=1

xi(1− θ)e−βxi

3− (1− θ)e−βxi

ω(β) ≤ n

β
−

n
∑

i=1

xi +
(1− θ)

2+ θ

n
∑

i=1

xi.

ω(β) ≥ n

β
−

n
∑

i=1

xi − 3

n
∑

i=1

xi(1− θ)e−βxi

1− (1− θ)e−βxi
.
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By noting 1− (1− θ)e−βxi ≥ θ and e−βxi ≤ 1. Hence,

Therefore, ω(β) ≥ 0 when β ≤ 1
x

θ
3−2θ

. Thus, there is at least one root of ω(β) = 0 in the 

interval 
(

1

X
θ

(3−2θ)
, 1

X
2+θ

(1+2θ)

)

. Recently, EM algorithm has been used by several authors 
to find the ML estimates of compound distributions’ parameters. EM algorithm which 
is used to make maximizing the complete data loglikelihood is useful when observed 
log likelihood equations are difficult to solve. However EM algorithm plays a crucial 
role for getting parameter estimates in such compound distribution as long as equations 
obtained in E-step are more simple and clear.�  �

Estimation by EM algorithm

The hypothetical complete-data (x, m) density function is given by

for xǫR+,m = 1, 2, . . . , θǫ(0, 1),β > 0. Here, θ and β are the parameters of the expo-
nential-zero truncated Lindley distribution. According to E-step of EM cycle, we need 
to compute the conditional expectation of M with given X = x. Therefore, immediately 
let’s write conditional probability mass function as below:

for m = 1, 2, . . ., where r = (1− θ)e−βx. By using equation (14), we can find the condi-
tional expectation of M to complete E-step as

M-step of each iteration requires maximization of complete-data likelihood func-
tion defined over (θ ,β). Let’s ℓc indicate complete-data log likelihood function, i.e. 
ln L(θ ,β; x,m) then

Hence, the likelihood equations can be verified by evaluating ∂ℓc
∂θ

= 0 and ∂ℓc
∂β

= 0 as 
below:

ω(β) ≥ n

β
−

(

1+ 3(1− θ)

θ

) n
∑

i=1

xi.

f (x,m; θ ,β) = βθ2

1+ 2θ
m(m+ 2)(1− θ)m−1e−βmx

(14)P(M = m|x; θ ,β) = (1− r)3

3− r
m(m+ 2)rm−1,

δ(x; θ ,β) = E(M|x; θ ,β) = 6

[

1

(3− r)(1− r)

]

− 1.

ℓc = n ln β + 2n ln θ − n ln (1+ 2θ)+
n

∑

i=1

ln (mi(mi + 2))

+ ln (1− θ)

n
∑

i=1

(mi − 1)− β

n
∑

i=1

mixi.

(15)

2(1− θ)

θ
− 2(1− θ)

1+ 2θ
+ 1 =

∑n
i=1mi

n

1

β
=

∑n
i=1mixi

n
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The M-step is completed with the missing observations of Mi replaced by δ(xi; θ(t),β(t) ) . 
Thus, iterative solution of the system of equations in (15) is given by

where ki(t) = δ(xi; θ(t),β(t) ) and ri(t) =
(

1− θ(t)
)

e−β(t)xi.

The information matrix 

We first calculate the elements of expected Hessian matrix of ℓ with respect to the distri-
bution of X. According to that, let aij’s denote expected values of the second derivatives 
of ℓ with respect to θ ,β where (i, j = 1, 2). Then we have

Thus, Fisher information matrix, In(θ ,β) of sample size n for (θ ,β ) is as follows:

Inverse of the Fisher-information matrix of single observation, i.e., I−1
1 (θ ,β) indicates 

asymptotic variance-covariance matrix of ML estimates of (θ ,β). Hence, joint distri-
bution of maximum likelihood estimator for (θ ,β) is asymptotically normal with mean 
(θ ,β) and variance-covariance matrix I−1

1 (θ ,β). Namely,

We have the 200 simulated data sets with sample size of n = 50 from the EMDL distri-
bution with known parameters as θ = 0.6 and β = 0.3. Based on the asymptotic normal 

θ(t+1) =

(

1−
∑n

i=1 ki
(t)

n

)

+

√

(

1−
∑n

i=1 ki
(t)

n

)2

+ 16

∑n
i=1 ki

(t)

n

4

∑n
i=1 ki

(t)

n

β(t+1) = n
∑n

i=1 xiki
(t)

a11 = E

(

∂2ℓ

∂θ2

)

= −2n

θ2
+ 4n

(1+ 2θ)2
− nθ2

(1+ 2θ)(1− θ)3

×
(

∫ 1−θ

0

r2

(3− r)(1− r)3
dr − 3

∫ 1−θ

0

r2(3− r)

(1− r)5
dr

)

= −2n

θ2
+ 4n

(1+ 2θ)2
− nθ2

(1+ 2θ)(1− θ)3

×
(

9

8
ln

(

2+ θ

3θ

)

+ 1− 5θ

4θ2
+ 1− 3

2

(1− θ)3(1+ θ)

θ4

)

a22 = E

(

∂2ℓ

∂β2

)

= −n

β2
+ 12nθ2

β2(1+ 2θ)(1− θ)

∫ 1−θ

0

r(2− r)

(3− r)(1− r)5

(

ln

(

r

1− θ

))2

dr

a12 = a21 = E

(

∂2ℓ

∂θ ∂β

)

= −12nθ2

β(1+ 2θ)(1− θ)2

∫ 1−θ

0

r(2− r)

(3− r)(1− r)5
ln

(

r

1− θ

)

dr

In(θ ,β) = −





E
�

∂2ℓ

∂θ2

�

E
�

∂2ℓ
∂θ ∂β

�

E
�

∂2ℓ
∂θ ∂β

�

E
�

∂2ℓ

∂β2

�



 = −
�

a11 a12
a12 a22

�

√
n

([

θ̂

β̂

]

−
[

θ

β

])

∼ AN

([

0

0

]

, I−1
1 (θ ,β)

)

.
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distribution, confidence ellipsoid of ML estimates for (θ ,β) can be drawn at the 95  % 
confidence level as follows.

Firstly, we present the asymptotic distribution of the ML estimates,

Now, let µ =
[

0.6

0.3

]

 indicate the center of ellipsoid, and observed information matrix 

is calculated as Î(θ ,β ) =
[

1.7622 −3.4018

−3.4018 10.3494

]

 (note that Î P→ I). Then the confidence 

ellipsoid at the level 95 % is defined by 50
([

θ̂

β̂

]

− µ

)′
Î

([

θ̂

β̂

]

− µ

)

≤ 5.99 where 5.99 

is a critical value of the chi-squared distribution with two degrees of freedom with upper 
percentiles 95 % (Fig. 7).

Simulation study

We conduct a simulation study generating 200 samples, each of which has a sample size 
of n = 10, 20, 50, 100. We computed the moment (using lower and upper bounds) and 
ML (Newton-Raphson and EM algorithm) estimates of the parameters for every sample 
size level with different values of θ and β. From each generated sample of a given size n 
the root mean square errors (RMSE) of four estimates are also calculated. These results 
are tabulated in Table 1.

It is observed from the tables that when β > θ, the ML estimates of θ and β are better 
than the others with respect to the RMSE. When θ > β, the moment estimates (both 
bounds) are as good as ML and EM estimates. Even for small sample size n, moment 
estimates are a little better.

Applications
We illustrate the applicability of EMDL distribution by considering three different data 
sets which have been examined by a lot of other researchers. First data set is tried to be 
modeled by Transmuted Pareto and Lindley Distributions, second and third data sets 

√
50

([

θ̂

β̂

]

−
[

0.6

0.3

])

∼ AN

(

[

0

0

]

,

[

1.7622 −3.4018

−3.4018 10.3494

]−1
)

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

θ

β

Fig. 7  Confidence region for 
(

θ̂ , β̂

)
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are tried to be modeled by the Exponential-Poisson (EP) and Exponential-Geometric 
(EG) distributions. In order to compare distributional models, we consider some criteria 
as K-S (Kolmogorow-Smirnow), −2LL(−2LogL), AIC (Akaike information criterion) and 
BIC (Bayesian information criterion) for the data sets.
Data Set1 The data consist of the exceedances of flood peaks (in m3/s) of the Whea-
ton River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances 
for the years 1958–1984, rounded to one decimal place. These data were analyzed by 
Choulakian and Stephens (2001) and are given in Table 2. Later on, Beta-Pareto distri-
bution was applied to these data by Akinsete et al. (2008). Merovcia and Pukab (2014) 
made a comparison between Pareto and transmuted Pareto distribution. They showed 
that better model is the transmuted Pareto distribution (TP). Bourguignon et al. (2013) 
proposed Kumaraswamy (Kw) Pareto distribution (Kw-P). Tahir et al. (2014) have pro-
posed weibull-Pareto distribution (WP) and made a comparison with Beta Exponenti-
ated Pareto (BEP) distriubtion. Nasiru and Luguterah (2015) have proposed different 
type of weibull-pareto distribution (NWP). Mahmoudi (2011) concluded that the Beta-
Generalized Pareto (BGP) distribution fits better to these data than the GP, BP, Weibull 
and Pareto models.

We fit data to EMDL distribution and get parameter estimates as θ̂ = 0.7782, 
β̂ = 0.0695. According to the model selection criteria (AIC, or BIC) tabulated in Table 3, 
it is said that EMDL takes fifth place in amongst 10 proposed models.

Table 2  Exceedances of Wheaton river flood data

 1.7  2.2  14.4  1.1  0.4  20.6 5.3  0.7

 13.0  12.0  9.3  1.4  18.7  8.5 25.5  11.6

 14.1  22.1  1.1  2.5  14.4  1.7 37.6  0.6

 2.2  39.0  0.3  15.0  11.0  7.3 22.9  1.7

 0.1  1.1  0.6  9.0  1.7  7.0 20.1  0.4

 14.1  9.9  10.4  10.7  30.0  3.6  5.6 30.8

 13.3  4.2  25.5  3.4  11.9  21.5 27.6  36.4

 2.7  64.0  1.5  2.5  27.4  1.0 27.1  20.2

 16.8  5.3  9.7  27.5  2.5  27.0 1.9  2.8

Table 3  Model selection criteria for river flood data

Model K-S −2LL AIC BIC

 T. Pareto  0.389  572.401  578.4  580.9

 Pareto  0.332  606.200  608.2  610.4

 EP  0.199  574.600  578.6  583.2

 BP  0.175  567.400  573.4  580.3

 Kw-P  0.170  542.400  548.4  555.3

 WP  –  498.793  502.8  507.3

 NWP  –  158.326  162.3  166.9

 BEP  –  496.111  504.1  513.2

 BGP  0.071  486.200  496.2  507.6

 EMDL  0.116  503.574  507.6  512.1
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Data Set2 The data set given in Table 4, contains the time intervals (in days) between 
coal mine accidents caused death of 10 or more men. Firstly, this data set was obtained 
by Maguire et al. (1952). There were lots of models on this data set such as Adamidis 
and Loukas (1998) and Kus (2007). They suggested to use Exponential-Geometric (EG) 
and Exponential-Poisson (EP) distributions respectively. On the other hand, Yilmaz et al. 
(2016) have proposed two-component mixed exponential distribution (2MED) for mod-
eling this data set. In addition to these three models, we try to fit this data set by using 
EMDL distribution and we get the parameter estimates as θ̂ = 0.5239 and β̂ = 0.0025 . 
We have only K-S and p values which are tabulated in Table 5 to make a comparison.
According to Table 5, EMDL distribution fits better than EG distribution. 
 Data Set3 The data set in Table 6 obtained by Kus (2007) includes the time intervals (in 
days) of the successive earthquakes with magnitudes greater than or equal to 6 Mw. Kus 
(2007) has used this data set to show the applicability of the EP distribution and he made 
a comparison between EG and EP distributions with K-S statistic. Parameter esitmates 
of EMDL distribution are θ̂ = 0.3540, β̂ = 0.0003. Calculated K-S statistic for EMDL can 
be seen in Table 7, according to this, EMDL distribution gives the best fit to earthquake 
data in three models. 

Table 4  The time intervals (in days) between coal mine accidents

 378  96  59  108  54  275  498  228  217  19  156

 36  124  61  188  217  78  49 271  120  329  47

 15  50  1  233  113  17  131 208  275  330  129

 31  120  13  28  32  1205  182 517  20  312  1630

 215  203  189  22  23  644  255  1613  66  171  29

 11  176  345  61  151  467  195  54  291  145  217

 137  55  20  78  361  871  224 326  4  75  7

 4  93  81  99  312  48  566 1312  369  364  18

 15  59  286  326  354  123  390  348  338  37  1357

 72  315  114  275  58  457  72 745  336  19

Table 5  K-S and p values for EP, EG, 2MED and EMDL

Model K-S p value

EP 0.0625 0.7876

EG 0.0761 0.5524

2MED 0.0578 0.8386

EMDL 0.0752 0.5436

Table 6  Time intervals of the successive earthquakes in North Anatolia fault zone

1163 3258 323 159 756 409

501 616 398 67 896 8592

2039 217 9 633 461 1821

4863 143 182 2117 3709 979
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Conclusions
In this paper we have proposed a new lifetime distribution, which is obtained by com-
pounding the modified discrete Lindley distribution (MDL) and exponential distribution, 
referred to as the EMDL. Some statistical characteristics of the proposed distribution 
including explicit formulas for the probability density, cumulative distribution, survival, 
hazard and mean residual life functions, moments and quantiles have been provided. We 
have proposed bounds to solve moment equations. We have derived the maximum likeli-
hood estimates and EM estimates of the parameters and their asymptotic variance-covar-
iance matrix. Simulation studies have been performed for different parameter values and 
sample sizes to assess the finite sample behaviour of moments, ML and EM estimates. 
The usefulness of the new lifetime distribution has been demonstrated in three data sets. 
EMDL distribution fits better for the third data set consisting of the times between suc-
cessive earthquakes in North Anatolia fault zone than the EP and EG.
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