2,465 research outputs found

    Non-commutative solitons and strong-weak duality

    Full text link
    Some properties of the non-commutative versions of the sine-Gordon model (NCSG) and the corresponding massive Thirring theories (NCMT) are studied. Our method relies on the NC extension of integrable models and the master Lagrangian approach to deal with dual theories. The master Lagrangians turn out to be the NC versions of the so-called affine Toda model coupled to matter fields (NCATM) associated to the group GL(2), in which the Toda field belongs to certain representations of either U(1)xU(1)U(1){x} U(1) or U(1)CU(1)_{C} corresponding to the Lechtenfeld et al. (NCSG1_{1}) or Grisaru-Penati (NCSG2_{2}) proposals for the NC versions of the sine-Gordon model, respectively. Besides, the relevant NCMT1,2_{1, 2} models are written for two (four) types of Dirac fields corresponding to the Moyal product extension of one (two) copy(ies) of the ordinary massive Thirring model. The NCATM1,2_{1,2} models share the same one-soliton (real Toda field sector of model 2) exact solutions, which are found without expansion in the NC parameter ξ\theta for the corresponding Toda and matter fields describing the strong-weak phases, respectively. The correspondence NCSG1_{1} ↔\leftrightarrow NCMT1_{1} is promising since it is expected to hold on the quantum level.Comment: 24 pages, 1 fig., LaTex. Typos in star products of eqs. (3.11)-(3.13) and footnote 1 were corrected. Version to appear in JHE

    An N=8 Superaffine Malcev Algebra and Its N=8 Sugawara

    Get PDF
    A supersymmetric affinization of the algebra of octonions is introduced. It satisfies a super-Malcev property and is N=8 supersymmetric. Its Sugawara construction recovers, in a special limit, the non-associative N=8 superalgebra of Englert et al. This paper extends to supersymmetry the results obtained by Osipov in the bosonic case.Comment: 10 pages, LaTe

    Computational fluid dynamics challenges for hybrid air vehicle applications

    Get PDF
    This paper begins by comparing turbulence models for the prediction of hybrid air vehicle (HAV) flows. A 6 : 1 prolate spheroid is employed for validation of the computational fluid dynamics (CFD) method. An analysis of turbulent quantities is presented and the Shear Stress Transport (SST) k-ω model is compared against a k-ω Explicit Algebraic Stress model (EASM) within the unsteady Reynolds-Averaged Navier-Stokes (RANS) framework. Further comparisons involve Scale Adaptative Simulation models and a local transition transport model. The results show that the flow around the vehicle at low pitch angles is sensitive to transition effects. At high pitch angles, the vortices generated on the suction side provide substantial lift augmentation and are better resolved by EASMs. The validated CFD method is employed for the flow around a shape similar to the Airlander aircraft of Hybrid Air Vehicles Ltd. The sensitivity of the transition location to the Reynolds number is demonstrated and the role of each vehicleÂŁs component is analyzed. It was found that the Šns contributed the most to increase the lift and drag

    Molecular jamming - the cystine slipknot mechanical clamp in all-atom simulations

    Full text link
    A recent survey of 17 134 proteins has identified a new class of proteins which are expected to yield stretching induced force-peaks in the range of 1 nN. Such high force peaks should be due to forcing of a slip-loop through a cystine ring, i.e. by generating a cystine slipknot. The survey has been performed in a simple coarse grained model. Here, we perform all-atom steered molecular dynamics simulations on 15 cystine knot proteins and determine their resistance to stretching. In agreement with previous studies within a coarse grained structure based model, the level of resistance is found to be substantially higher than in proteins in which the mechanical clamp operates through shear. The large stretching forces arise through formation of the cystine slipknot mechanical clamp and the resulting steric jamming. We elucidate the workings of such a clamp in an atomic detail. We also study the behavior of five top strength proteins with the shear-based mechanostability in which no jamming is involved. We show that in the atomic model, the jamming state is relieved by moving one amino acid at a time and there is a choice in the selection of the amino acid that advances the first. In contrast, the coarse grained model also allows for a simultaneous passage of two amino acids

    Properties of ultra-cool dwarfs with Gaia. An assessment of the accuracy for the temperature determination

    Full text link
    We aimed to assess the accuracy of the Gaia teff and logg estimates as derived with current models and observations. We assessed the validity of several inference techniques for deriving the physical parameters of ultra-cool dwarf stars. We used synthetic spectra derived from ultra-cool dwarf models to construct (train) the regression models. We derived the intrinsic uncertainties of the best inference models and assessed their validity by comparing the estimated parameters with the values derived in the bibliography for a sample of ultra-cool dwarf stars observed from the ground. We estimated the total number of ultra-cool dwarfs per spectral subtype, and obtained values that can be summarised (in orders of magnitude) as 400000 objects in the M5-L0 range, 600 objects between L0 and L5, 30 objects between L5 and T0, and 10 objects between T0 and T8. A bright ultra-cool dwarf (with teff=2500 K and \logg=3.5 will be detected by Gaia out to approximately 220 pc, while for teff=1500 K (spectral type L5) and the same surface gravity, this maximum distance reduces to 10-20 pc. The RMSE of the prediction deduced from ground-based spectra of ultra-cool dwarfs simulated at the Gaia spectral range and resolution, and for a Gaia magnitude G=20 is 213 K and 266 K for the models based on k-nearest neighbours and Gaussian process regression, respectively. These are total errors in the sense that they include the internal and external errors, with the latter caused by the inability of the synthetic spectral models (used for the construction of the regression models) to exactly reproduce the observed spectra, and by the large uncertainties in the current calibrations of spectral types and effective temperatures.Comment: 18 pages, 17 figures, accepted by Astronomy & Astrophysic

    G\"odel-type Spacetimes in Induced Matter Gravity Theory

    Full text link
    A five-dimensional (5D) generalized G\"odel-type manifolds are examined in the light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manifolds is studied. It is found that they are characterized by three essential parameters kk, m2m^2 and ω\omega: identical triads (k,m2,ω)(k, m^2, \omega) correspond to locally equivalent 5D manifolds. An irreducible set of isometrically nonequivalent 5D locally homogeneous Riemannian generalized G\"odel-type metrics are exhibited. A classification of these manifolds based on the essential parameters is presented, and the Killing vector fields as well as the corresponding Lie algebra of each class are determined. It is shown that the generalized G\"odel-type 5D manifolds admit maximal group of isometry GrG_r with r=7r=7, r=9r=9 or r=15r=15 depending on the essential parameters kk, m2m^2 and ω\omega. The breakdown of causality in all these classes of homogeneous G\"odel-type manifolds are also examined. It is found that in three out of the six irreducible classes the causality can be violated. The unique generalized G\"odel-type solution of the induced matter (IM) field equations is found. The question as to whether the induced matter version of general relativity is an effective therapy for these type of causal anomalies of general relativity is also discussed in connection with a recent article by Romero, Tavakol and Zalaletdinov.Comment: 19 pages, Latex, no figures. To Appear in J.Math.Phys.(1999

    Division Algebras and Extended N=2,4,8 SuperKdVs

    Full text link
    The first example of an N=8 supersymmetric extension of the KdV equation is here explicitly constructed. It involves 8 bosonic and 8 fermionic fields. It corresponds to the unique N=8 solution based on a generalized hamiltonian dynamics with (generalized) Poisson brackets given by the Non-associative N=8 Superconformal Algebra. The complete list of inequivalent classes of parametric-dependent N=3 and N=4 superKdVs obtained from the ``Non-associative N=8 SCA" is also furnished. Furthermore, a fundamental domain characterizing the class of inequivalent N=4 superKdVs based on the "minimal N=4 SCA" is given.Comment: 14 pages, LaTe
    • 

    corecore