15 research outputs found

    Aptamers for pharmaceuticals and their application in environmental analytics

    Get PDF
    Aptamers are single-stranded DNA or RNA oligonucleotides, which are able to bind with high affinity and specificity to their target. This property is used for a multitude of applications, for instance as molecular recognition elements in biosensors and other assays. Biosensor application of aptamers offers the possibility for fast and easy detection of environmental relevant substances. Pharmaceutical residues, deriving from human or animal medical treatment, are found in surface, ground, and drinking water. At least the whole range of frequently administered drugs can be detected in noticeable concentrations. Biosensors and assays based on aptamers as specific recognition elements are very convenient for this application because aptamer development is possible for toxic targets. Commonly used biological receptors for biosensors like enzymes or antibodies are mostly unavailable for the detection of pharmaceuticals. This review describes the research activities of aptamer and sensor developments for pharmaceutical detection, with focus on environmental applications

    Workshop on rotifers in ecotoxicology

    Full text link
    The aim of the workshop on rotifers in ecotoxicology was to stimulate discussions on new developments in the field. Discussions about the use of biomolecular tools indicate that gene expression analysis with rotifers should be available in the next few years. Such analyses will be a great asset as they enable ecotoxicologists to study molecular mechanisms of toxicity. Rotifers also appear as useful tools in the risk assessment of pharmaceuticals and their metabolites that find their way into aquatic ecosystems because their sensitivity to some of these substances is higher than that of cladocerans and algae. The nature and extent of the impact of potential endocrine disruptors on aquatic invertebrates is another poorly resolved issue for which rotifers are a promising tool. Indeed, rotifers seem to be particularly sensitive to androgenic and anti-antiandrogenic substances, whereas copepods and cladocerans are typically more affected by estrogens and juvenile hormone-like compounds. Besides their usefulness in these emerging fields of aquatic ecotoxicology, it was emphasized that research with rotifers on basic issues like, e.g., toxicant interference with predation, competition, or interspecific and interclonal variation in ecotoxicological tests is still needed
    corecore