14 research outputs found

    The combined effect of two mutations that alter serially homologous color pattern elements on the fore and hindwings of a butterfly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability for serially homologous structures to acquire a separate identity has been primarily investigated for structures dependent on Hox gene input but is still incompletely understood in other systems. The fore and hindwings of butterflies are serially homologous structures as are the serially homologous eyespots that can decorate each of these wings. Eyespots can vary in number between fore and hindwings of the same individual and mutations of large effect can control the total number of eyespots that each of the wings displays. Here we investigate the genetics of a new spontaneous color pattern mutation, <it>Missing</it>, that alters eyespot number in the nymphalid butterfly, <it>Bicyclus anynana</it>. We further test the interaction of <it>Missing </it>with a previously described mutation, <it>Spotty</it>, describe the developmental stage affected by <it>Missing</it>, and test whether <it>Missing </it>is a mutant variant of the gene <it>Distal-less </it>via a linkage association study.</p> <p>Results</p> <p><it>Missing </it>removes or greatly reduces the size of two of the hindwing eyespots from the row of seven eyespots, with no detectable effect on the rest of the wing pattern. Offspring carrying a single <it>Missing </it>allele display intermediate sized eyespots at these positions. <it>Spotty </it>has the opposite effect of <it>Missing</it>, i.e., it introduces two extra eyespots in homologous wing positions to those affected by <it>Missing</it>, but on the forewing. When <it>Missing </it>is combined with <it>Spotty </it>the size of the two forewing eyespots decreases but the size of the hindwing spots stays the same, suggesting that these two mutations have a combined effect on the forewing such that <it>Missing </it>reduces eyespot size when in the presence of a <it>Spotty </it>mutant allele, but that <it>Spotty </it>has no effect on the hindwing. <it>Missing </it>prevents the complete differentiation of two of the eyespot foci on the hindwing. We found no evidence for any linkage between the <it>Distal-less </it>and <it>Missing </it>genes.</p> <p>Conclusion</p> <p>The spontaneous mutation <it>Missing </it>controls the differentiation of the signaling centers of a subset of the serial homologous eyespots present on both the fore and the hindwing in a dose-dependent fashion. The effect of <it>Missing </it>on the forewing, however, is only observed when the mutation <it>Spotty </it>introduces additional eyespots on this wing. <it>Spotty</it>, on the other hand, controls the differentiation of eyespot centers only on the forewing. <it>Spotty</it>, unlike <it>Missing</it>, may be under Ubx gene regulation, since it affects a subset of eyespots on only one of the serially homologous wings.</p

    Hox genes specify vertebral types in the presomitic mesoderm

    No full text

    Mesenchymal patterning by Hoxa2 requires blocking Fgf-dependent activation of Ptx1

    No full text
    Hox genes are known key regulators of embryonic segmental identity, but little is known about the mechanisms of their action. To address this issue, we have analyzed how Hoxa2 specifies segmental identity in the second branchial arch. Using a subtraction approach, we found that Ptx1 was upregulated in the second arch mesenchyme of Hoxa2 mutants. This upregulation has functional significance because, in Hoxa2-/-; Ptx1-/- embryos, the Hoxa2-/- phenotype is partially reversed. Hoxa2 interferes with the Ptx1 activating process, which is dependent on Fgf signals from the epithelium. Consistently, Lhx6, another target of Fgf8 signaling, is also upregulated in the Hoxa2-/- second arch mesenchyme. Our findings have important implications for the understanding of developmental processes in the branchial area and suggest a novel mechanism for mesenchymal patterning by Hox genes that acts to define the competence of mesenchymal cells to respond to skeletogenic signals

    Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos.

    Get PDF
    Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenotypes. Conversely, posterior (paralog group 13) Hox genes can prematurely arrest posterior axial growth when precociously expressed. Our data suggest that the transition from trunk to tail Hox gene expression successively regulates the construction and termination of axial structures in the mouse embryo. Thus, Hox genes seem to differentially orchestrate posterior expansion of embryonic tissues during axial morphogenesis as an integral part of their function in specifying head-to-tail identity. In addition, we present evidence that Cdx and Hox transcription factors exert these effects by controlling Wnt signaling. Concomitant regulation of Cyp26a1 expression, restraining retinoic acid signaling away from the posterior growth zone, may likewise play a role in timing the trunk-tail transition.

    Evo-devo of the human vertebral column : on homeotic transformations, pathologies and prenatal selection

    Get PDF
    Homeotic transformations of vertebrae are particularly common in humans and tend to come associated with malformations in a wide variety of organ systems. In a dataset of 1,389 deceased human foetuses and infants a majority had cervical ribs and approximately half of these individuals also had missing twelfth ribs or lumbar ribs. In ~10 % of all cases there was an additional shift of the lumbo-sacral boundary and, hence, homeotic transformations resulted in shifts of at least three vertebral boundaries. We found a strong coupling between the abnormality of the vertebral patterns and the amount and strength of associated malformations, i.e., the longer the disturbance of the vertebral patterning has lasted, the more associated malformations have developed and the more organ systems are affected. The germ layer of origin of the malformations was not significantly associated with the frequency of vertebral patterns. In contrast, we find significant associations with the different developmental mechanisms that are involved in the causation of the malformations, that is, segmentation, neural crest development, left-right patterning, etc. Our results, thus, suggest that locally perceived developmental signals are more important for the developmental outcome than the origin of the cells. The low robustness of vertebral A-P patterning apparent from the large number of homeotic transformations is probably caused by the strong interactivity of developmental processes and the low redundancy of involved morphogens during early organogenesis. Additionally, the early irreversibility of the specification of the A-P identity of vertebrae probably adds to the vulnerability of the process by limiting the possibility for recovery from developmental disturbances. The low developmental robustness of vertebral A-P patterning contrasts with a high robustness of the A-P patterning of the vertebral regions. Not only the order is invariable, also the variation in the number of vertebrae per region is small. This robustness is in agreement with the evolutionary stability of vertebral regions in tetrapods. Finally, we propose a new hypothesis regarding the constancy of the presacral number of vertebrae in mammals
    corecore