455 research outputs found

    Considerations on the Adoption of Named Data Networking (NDN) in Tactical Environments

    Get PDF
    Mobile military networks are uniquely challenging to build and maintain, because of their wireless nature and the unfriendliness of the environment, resulting in unreliable and capacity limited performance. Currently, most tactical networks implement TCP/IP, which was designed for fairly stable, infrastructure-based environments, and requires sophisticated and often application-specific extensions to address the challenges of the communication scenario. Information Centric Networking (ICN) is a clean slate networking approach that does not depend on stable connections to retrieve information and naturally provides support for node mobility and delay/disruption tolerant communications - as a result it is particularly interesting for tactical applications. However, despite ICN seems to offer some structural benefits for tactical environments over TCP/IP, a number of challenges including naming, security, performance tuning, etc., still need to be addressed for practical adoption. This document, prepared within NATO IST-161 RTG, evaluates the effectiveness of Named Data Networking (NDN), the de facto standard implementation of ICN, in the context of tactical edge networks and its potential for adoption

    Developmental conditioning confers vulnerability in the adult and ageing nervous system.

    Get PDF
    This thesis looks at the condition under which sympathetic neurons (SCG) develop in order to understand the causes of selective vulnerability during ageing and therefore shows how pre-treatment in vivo with NGF at a specific point during development affects SCG neurons. In summary, results show that following pre-treatment in vivo there is an increase in neuronal number, with differential effect on different subpopulations of neurons (MCA versus iris projecting neurons). MCA-projecting neurons (a vulnerable subpopulation of SCG neurons) increase in growth and innervation of specific target tissues following NGF pre-treatment in vivo, showing a maintained plasticity after termination of development and therefore a potential target site for future therapeutics. NGF pre-treatment in vivo also increases neuronal survival time throughout life, showing that the limited supply of NGF in real life prime neurons to a reduced potential. The results on survival also show a difference in the mode of action between the two major survival pathways (PI3-K and ERK), with PI3-K being the predominant in adult life and ERK acting mainly in early life. This shows a double survival mechanism which is plastic and capable of shifting predominance according to factors such as NGF stimuli and/or ageing. Furthermore if the NGF pre-treatment in vivo is applied after termination of development, neurons show plasticity by developing an 'addiction' or dependance to NGF pre-treatment termination results in death of the neurons. Preliminary results show increase in Akt activity which is downstream of PT3-K, and is activated in NGF-dependent survival of SCG neurons (Pierchala et aL, 2004). Biological consequences of Akt activation are survival, increase in cell number and growth, which are all characteristics relevant also to cancer-cell growth. Further preliminary results show an inhibition of GSK-3p pathways, which is downstream of Akt and is determinant for cytoskeletal rearrangement, glucose metabolism and cell survival regulation of GSK-3p has been widely studied in relation to Alzheimer's disease. In conclusions this research shows that sympathetic neurons are plastic and by priming mem with NGF, at a critical point during development, their survivability is increased. These results support the existence of a sensitive mechanism for adjusting neuronal capacity to resist cell death in response to neurotrophic factor deprivation

    Approximate Bayesian inference for individual-based models with emergent dynamics

    Get PDF
    Individual-based models are used in a variety of scientific domains to study systems composed of multiple agents that interact with one another and lead to complex emergent dynamics at the macroscale. A standard approach in the analysis of these systems is to specify the microscale interaction rules in a simulation model, run simulations, and then qualitatively compare outputs to empirical observations. Recently, more robust methods for inference for these types of models have been introduced, notably approximate Bayesian computation, however major challenges remain due to the computational cost of simulations and the nonlinear nature of many complex systems. Here, we compare two methods of approximate inference in a classic individual-based model of group dynamics with well-studied nonlinear macroscale behaviour; we employ a Gaussian process accelerated ABC method with an approximated likelihood and with a synthetic likelihood. We compare the accuracy of results when re-inferring parameters using a measure of macro-scale disorder (the order parameter) as a summary statistic. Our findings reveal that for a canonical simple model of animal collective movement, parameter inference is accurate and computationally efficient, even when the model is poised at the critical transition between order and disorder

    Modelling multiscale collective behavior with Gaussian processes

    Get PDF
    Collective behavior is characterized by the emergence of large-scale phenomena from local interactions. It is found in many contexts, including political movements, fads and fashions, and animal grouping. In this paper, we aim to elucidate the mechanisms that underlie observed collective behavior by developing a novel mathematical framework based on equation-free modelling procedures and Gaussian process regression. This allows us to circumvent the possible lack of formal mathematical links between scales and instead use statistical emulation to learn an empirical Fokker-Planck equation. Our approach advances our ability to understand how complex systems function at both the individual and collective level when a formal mathematical description of macroscale dynamics is unavailable

    A cautionary tale: an evaluation of the performance of treatment switching adjustment methods in a real world case study

    Get PDF
    Background Treatment switching in randomised controlled trials (RCTs) is a problem for health technology assessment when substantial proportions of patients switch onto effective treatments that would not be available in standard clinical practice. Often statistical methods are used to adjust for switching: these can be applied in different ways, and performance has been assessed in simulation studies, but not in real-world case studies. We assessed the performance of adjustment methods described in National Institute for Health and Care Excellence Decision Support Unit Technical Support Document 16, applying them to an RCT comparing panitumumab to best supportive care (BSC) in colorectal cancer, in which 76% of patients randomised to BSC switched onto panitumumab. The RCT resulted in intention-to-treat hazard ratios (HR) for overall survival (OS) of 1.00 (95% confidence interval [CI] 0.82–1.22) for all patients, and 0.99 (95% CI 0.75–1.29) for patients with wild-type KRAS (Kirsten rat sarcoma virus). Methods We tested several applications of inverse probability of censoring weights (IPCW), rank preserving structural failure time models (RPSFTM) and simple and complex two-stage estimation (TSE) to estimate treatment effects that would have been observed if BSC patients had not switched onto panitumumab. To assess the performance of these analyses we ascertained the true effectiveness of panitumumab based on: (i) subsequent RCTs of panitumumab that disallowed treatment switching; (ii) studies of cetuximab that disallowed treatment switching, (iii) analyses demonstrating that only patients with wild-type KRAS benefit from panitumumab. These sources suggest the true OS HR for panitumumab is 0.76–0.77 (95% CI 0.60–0.98) for all patients, and 0.55–0.73 (95% CI 0.41–0.93) for patients with wild-type KRAS. Results Some applications of IPCW and TSE provided treatment effect estimates that closely matched the point-estimates and CIs of the expected truths. However, other applications produced estimates towards the boundaries of the expected truths, with some TSE applications producing estimates that lay outside the expected true confidence intervals. The RPSFTM performed relatively poorly, with all applications providing treatment effect estimates close to 1, often with extremely wide confidence intervals. Conclusions Adjustment analyses may provide unreliable results. How each method is applied must be scrutinised to assess reliability

    Predictive value of hematological and phenotypical parameters on postchemotherapy leukocyte recovery

    Get PDF
    Background: Grade IV chemotherapy toxicity is defined as absolute neutrophil count <500/μL. The nadir is considered as the lowest neutrophil number following chemotherapy, and generally is not expected before the 7th day from the start of chemotherapy. The usual prophylactic dose of rHu-G-CSF (Filgrastim) is 300 μg/day, starting 24-48 h after chemotherapy until hematological recovery. However, individual patient response is largely variable, so that rHu-G-CSF doses can be different. The aim of this study was to verify if peripheral blood automated flow cytochemistry and flow cytometry analysis may be helpful in predicting the individual response and saving rHu-G-CSF. Methods: During Grade IV neutropenia, blood counts from 30 cancer patients were analyzed daily by ADVIA 120 automated flow cytochemistry analyzer and by Facscalibur flow cytometer till the nadir. "Large unstained cells" (LUCs), myeloperoxidase index (MPXI), blasts, and various cell subpopulations in the peripheral blood were studied. At nadir rHu-G-CSF was started and 81 chemotherapy cycles were analyzed. Cycles were stratified according to their number and to two dose-levels of rHuG-CSF needed to recovery (300-600 vs. 900-1200 μg) and analyzed in relation to mean values of MPXI and mean absolute number of LUCs in the nadir phase. The linear regressions of LUCs % over time in relation to two dose-levels of rHu-G-CSF and uni-multivariate analysis of lymphocyte subpopulations, CD34+ cells, MPXI, and blasts were also performed. Results: In the nadir phase, the increase of MPXI above the upper limit of normality (>10; median 27.7), characterized a slow hematological recovery. MPXI levels were directly related to the cycle number and inversely related to the absolute number of LUCs and CD34 +/CD45+ cells. A faster hematological recovery was associated with a higher LUC increase per day (0.56% vs. 0.25%), higher blast (median 36.7/μL vs. 19.5/μL) and CD34+/CD45+ cell (median 2.2/μL vs. 0.82/μL) counts. Conclusions: Our study showed that some biological indicators such as MPXI, LUCs, blasts, and CD34 +/CD45+ cells may be of clinical relevance in predicting individual hematological response to rHu-G-CSF. Special attention should be paid when nadir MPXI exceeds the upper limit of normality because the hematological recovery may be delayed. © 2009 Clinical Cytometry Society

    Individual quality assessment of autografting by probability estimation for clinical endpoints: a prospective validation study from the European group for blood and marrow transplantation.

    Get PDF
    The aim of supportive autografting is to reduce the side effects from stem cell transplantation and avoid procedure-related health disadvantages for patients at the lowest possible cost and resource expenditure. Economic evaluation of health care is becoming increasingly important. We report clinical and laboratory data collected from 397 consecutive adult patients (173 non-Hodgkin lymphoma, 30 Hodgkin lymphoma, 160 multiple myeloma, 7 autoimmune diseases, and 28 acute leukemia) who underwent their first autologous peripheral blood stem cell transplantation (PBSCT). We considered primary endpoints evaluating health economic efficacy (eg, antibiotic administration, transfusion of blood components, and time in hospital), secondary endpoints evaluating toxicity (in accordance with Common Toxicity Criteria), and tertiary endpoints evaluating safety (ie, the risk of regimen-related death or disease progression within the first year after PBSCT). A time-dependent grading of efficacy is proposed with day 21 for multiple myeloma and day 25 for the other disease categories (depending on the length of the conditioning regimen) as the acceptable maximum time in hospital, which together with antibiotics, antifungal, or transfusion therapy delineates four groups: favorable (≤7 days on antibiotics and no transfusions; ≤21 [25] days in hospital), intermediate (from 7 to 10 days on antibiotics and 7 days on antibiotics, >3 but 30/34 days in hospital after transplantation), and very unfavorable (>10 days on antibiotics, >6 transfusions; >30 to 34 days in hospital). The multivariate analysis showed that (1) PBSC harvests of ≥4 × 106/kg CD34 + cells in 1 apheresis procedure were associated with a favorable outcome in all patient categories except acute myelogenous leukemia and acute lymphoblastic leukemia (P = .001), (2) ≥5 × 106/kg CD34 + cells infused predicted better transplantation outcome in all patient categories (P 500 mL) (P = .002), and (5) patients with a central venous catheter during both collection and infusion of PBSC had a more favorable outcome post-PBSCT than peripheral access (P = .007). The type of mobilization regimen did not affect the outcome of auto-PBSCT. The present study identified predictive variables, which may be useful in future individual pretransplantation probability evaluations with the goal to improve supportive care

    Quantifying the improvement of surrogate indices of hepatic insulin resistance using complex measurement techniques

    Get PDF
    We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the metabolic syndrome (age 55.6±1.0 years, BMI 31.5±0.4 kg/m2; 30 males). HEP-IR was defined by measuring endogenous-glucose-production (EGP) with [6–62H2] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms, diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR, explaining 39–56% of the variance, depending on regression variable combination. The validation of the regression equations showed little variation between the different proposed indices (r2 = 27–32%) on a matched dataset. New complex indices encompassing advanced measurement techniques offered an improved correlation (r = 0.75, P<0.001). However, when validated against the alternative dataset all indices performed comparably with the standard homeostasis model assessment for insulin resistance (HOMA-IR) (r = 0.54, P<0.001). Thus, simple estimates of HEP-IR performed comparable to more complex indices and could be an efficient and cost effective approach in large epidemiological investigations
    • …
    corecore